This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062062 #21 Sep 24 2018 17:45:00 %S A062062 1,2,3,5,7,8,9,11,13,14,15,17,19,22,23,25,27,28,29,31,33,34,35,37,39, %T A062062 41,43,44,45,47,49,52,53,55,57,58,59,61,63,64,65,67,69,71,73,74,75,77, %U A062062 79,82,83,85,87,88,89,91,93,94,95,97,99,101,103,104,105,107,109,113 %N A062062 Smallest increasing sequence where each term is coprime to preceding three terms. %C A062062 a(n+125) = a(n) + 210, n >= 7. Also maximal term difference is 4 = a(68)-a(67). - _David W. Wilson_, Jun 18 2001 %H A062062 T. D. Noe, <a href="/A062062/b062062.txt">Table of n, a(n) for n=1..1000</a> %H A062062 Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, <a href="https://doi.org/10.4230/LIPIcs.AofA.2018.29">Asymptotic Expansions for Sub-Critical Lagrangean Forms</a>, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018. %e A062062 After 19, 22, 23 the next term is 25 as 24 has 2 as common divisor with 22. %t A062062 a[ 1 ]=1; a[ 2 ]=2; a[ 3 ]=3; a[ n_ ] := a[ n ]=Module[ {}, b=a[ n-1 ]; While[ GCD[ b, a[ n-1 ] ]>1||GCD[ b, a[ n-2 ] ]> 1||GCD[ b, a[ n-3 ] ]>1, b++ ]; b ] Array[ a, 100 ] %o A062062 (PARI) { for (n=1, 1000, if (n>3, until (gcd(a, a1)==1 && gcd(a, a2)==1 && gcd(a, a3)==1, a++); a3=a2; a2=a1; a1=a, if (n==1, a=a3=1, if (n==2, a=a2=2, a=a1=3))); write("b062062.txt", n, " ", a) ) } \\ _Harry J. Smith_, Jul 31 2009 %Y A062062 Cf. A047255, A062063. %K A062062 nonn,easy %O A062062 1,2 %A A062062 _Amarnath Murthy_, Jun 12 2001 %E A062062 More terms from _Erich Friedman_, Jun 15 2001 %E A062062 Clarified by _Charles R Greathouse IV_, Aug 02 2010