cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062072 Continued fraction expansion of Fibonacci factorial constant.

This page as a plain text file.
%I A062072 #20 Aug 04 2024 12:44:35
%S A062072 1,4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,1,11,1,7,1,3,1,12,2,1,1,
%T A062072 1,7,1,3,1,12,2,1,2,2,9,27,1,1,1,1,2,19,3,8,1,1,15,3,1,2,1,1,1,3,2,3,
%U A062072 8,1,1,14,1,49,2,1,17,4,2,1,2,2,1,3,1,5,1,1,3,1,2,1,4,1,2,5,1,3,2,1,1,2,6
%N A062072 Continued fraction expansion of Fibonacci factorial constant.
%D A062072 R. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.
%H A062072 Harry J. Smith, <a href="/A062072/b062072.txt">Table of n, a(n) for n = 0..4999</a>
%H A062072 Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/fibofact.txt">Plouffe's Inverter</a>
%F A062072 C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
%e A062072 1.2267420107203532444176302...
%o A062072 (PARI) \p 500 a=-1/(1/2+sqrt(5)/2)^2; contfrac(prod(n=1,17000,(1-a^n)))
%o A062072 (PARI) { allocatemem(932245000); default(realprecision, 5300); p=-1/(1/2 + sqrt(5)/2)^2; x=contfrac(prodinf(k=1, 1-p^k)); for (n=1, 5000, write("b062072.txt", n-1, " ", x[n])) } \\ _Harry J. Smith_, Jul 31 2009
%Y A062072 Cf. A062073 (decimal expansion).
%K A062072 easy,nonn,cofr
%O A062072 0,2
%A A062072 _Jason Earls_, Jun 27 2001
%E A062072 Offset changed by _Andrew Howroyd_, Aug 04 2024