This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062088 #25 Sep 23 2022 16:39:09 %S A062088 2,3,5,7,23,223,227,337,353,373,557,577,733,757,773,2333,2357,2377, %T A062088 2557,2753,2777,3253,3257,3323,3527,3727,5233,5237,5273,5323,5527, %U A062088 7237,7253,7523,7723,7727,22573,23327,25237,25253,25523,27253,27527,32233,32237,32257 %N A062088 Primes with every digit a prime and the sum of the digits a prime. %H A062088 Alois P. Heinz, <a href="/A062088/b062088.txt">Table of n, a(n) for n = 1..10000</a> (first 718 terms from Marius A. Burtea) %e A062088 2357 is a prime, each digit is a prime and the sum of digits = 17 is also a prime, so 2357 is a term. %t A062088 aQ[p_] := PrimeQ[p] && Module[{d = IntegerDigits[p]}, PrimeQ[Total[d]] && LengthWhile[d, PrimeQ[#] &] == Length[d]]; Select[Range[33000], aQ] (* _Amiram Eldar_, Dec 08 2018 *) %o A062088 (PARI) isok(p) = isprime(p) && isprime(sumdigits(p)) && (#select(x->(! isprime(x)), digits(p)) == 0); \\ _Michel Marcus_, Dec 08 2018 %o A062088 (MATLAB) %o A062088 prim=primes(1000000); %o A062088 m=1; %o A062088 for u=1:100; %o A062088 v=prim(u); %o A062088 nc=dec2base(v,10)-'0'; %o A062088 s=sum(nc); %o A062088 if and(isprime(nc)==1,isprime(s)==1) %o A062088 sol(m)=v; %o A062088 m=m+1; %o A062088 end %o A062088 end %o A062088 sol; % _Marius A. Burtea_, Dec 08 2018 %o A062088 (Python) %o A062088 from sympy import isprime %o A062088 from itertools import count, islice, product %o A062088 def agen(): %o A062088 yield from [2, 3, 5, 7] %o A062088 for d in count(2): %o A062088 for left in product("2357", repeat=d-1): %o A062088 for end in "37": %o A062088 ts = "".join(left) + end %o A062088 if isprime(sum(map(int, ts))): %o A062088 t = int(ts) %o A062088 if isprime(t): yield t %o A062088 print(list(islice(agen(), 46))) # _Michael S. Branicky_, Sep 23 2022 %Y A062088 Intersection of A019546 and A046704. %K A062088 nonn,base,easy %O A062088 1,1 %A A062088 _Amarnath Murthy_, Jun 16 2001 %E A062088 Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 21 2001