This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062104 #22 Mar 06 2016 03:24:00 %S A062104 0,0,1,0,1,2,0,1,3,6,0,1,3,9,15,0,1,3,10,25,40,0,1,3,10,29,69,109,0,1, %T A062104 3,10,30,84,193,302,0,1,3,10,30,89,242,544,846,0,1,3,10,30,90,263,698, %U A062104 1544,2390,0,1,3,10,30,90,269,774,2016,4406,6796,0,1,3,10,30,90,270 %N A062104 Square array read by antidiagonals: number of ways a black pawn (starting at any square on the second rank) can (theoretically) end at various squares on an infinite chessboard. %C A062104 Table formatted as a square array shows the top-left corner of the infinite board. %e A062104 Array begins: %e A062104 0 0 0 0 0 0 0 0 0 0 0 0 ... %e A062104 1 1 1 1 1 1 1 1 1 1 1 ... %e A062104 2 3 3 3 3 3 3 3 3 3 ... %e A062104 6 9 10 10 10 10 10 10 10 ... %e A062104 15 25 29 30 30 30 30 30 ... %e A062104 40 69 84 89 90 90 90 ... %e A062104 109 193 242 263 269 270 ... %e A062104 302 544 698 774 ... %e A062104 846 1544 2016 ... %e A062104 2390 4406 ... %e A062104 6796 ... %p A062104 [seq(CPTSeq(j),j=0..91)]; CPTSeq := n -> ChessPawnTriangle( (1+(n-((trinv(n)*(trinv(n)-1))/2))), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) ); %p A062104 ChessPawnTriangle := proc(r,c) option remember; if(r < 2) then RETURN(0); fi; if(c < 1) then RETURN(0); fi; if(2 = r) then RETURN(1); fi; if(4 = r) then RETURN(1+ChessPawnTriangle(r-1,c-1)+ChessPawnTriangle(r-1,c)+ChessPawnTriangle(r-1,c+1)); %p A062104 else RETURN(ChessPawnTriangle(r-1,c-1)+ChessPawnTriangle(r-1,c)+ChessPawnTriangle(r-1,c+1)); fi; end; %t A062104 trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2]; %t A062104 CPTSeq[n_] := ChessPawnTriangle[(1 + (n - ((trinv[n]*(trinv[n] - 1))/2))), ((((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1)]; %t A062104 ChessPawnTriangle[r_, c_] := ChessPawnTriangle[r, c] = Which[r < 2, 0, c < 1, 0, 2 == r, 1, 4 == r, 1 + ChessPawnTriangle[r - 1, c - 1] + ChessPawnTriangle[r - 1, c] + ChessPawnTriangle[r - 1, c + 1], True, ChessPawnTriangle[r - 1, c - 1] + ChessPawnTriangle[r - 1, c] + ChessPawnTriangle[r - 1, c + 1]]; %t A062104 Table[CPTSeq[j], {j, 0, 91}] (* _Jean-François Alcover_, Mar 06 2016, adapted from Maple *) %Y A062104 A062106 gives the left column and A062107 the diagonal of the table. A062105 is a more regular variant. Cf. also A062103. Trinv given at A054425. %K A062104 nonn,tabl %O A062104 0,6 %A A062104 _Antti Karttunen_, May 30 2001 %E A062104 Edited by _N. J. A. Sloane_, May 22 2014