This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062105 #39 Sep 20 2024 06:14:09 %S A062105 1,1,2,1,3,5,1,3,8,13,1,3,9,22,35,1,3,9,26,61,96,1,3,9,27,75,171,267, %T A062105 1,3,9,27,80,216,483,750,1,3,9,27,81,236,623,1373,2123,1,3,9,27,81, %U A062105 242,694,1800,3923,6046,1,3,9,27,81,243,721,2038,5211,11257,17303,1,3,9,27 %N A062105 Square array read by antidiagonals: number of ways a pawn-like piece (with the initial 2-step move forbidden and starting from any square on the back rank) can end at various squares on an infinite chessboard. %C A062105 Table formatted as a square array shows the top-left corner of the infinite board. %C A062105 The same array can also be constructed by the method used for constructing A217536, except with a top row consisting entirely of 1's instead of the natural numbers. - _WG Zeist_, Aug 25 2024 %H A062105 Hans L. Bodlaender, <a href="http://www.chessvariants.com/index.html">The Chess Variant Pages</a> %H A062105 Hans L. Bodlaender et al., editors, <a href="http://www.chessvariants.com/piececlopedia.dir/index.html">The Piececlopedia (An overview of several fairy chess pieces)</a> %e A062105 Array begins: %e A062105 1 1 1 1 1 1 1 1 1 1 1 %e A062105 2 3 3 3 3 3 3 3 3 3 3 %e A062105 5 8 9 9 9 9 9 9 9 9 ... %e A062105 13 22 26 27 27 27 27 27 27 ... %e A062105 35 61 75 80 81 81 81 ... %e A062105 96 171 216 236 242 243 ... %e A062105 267 483 623 694 721 ... %e A062105 750 1373 1800 2038 ... %e A062105 2123 3923 5211 ... %e A062105 6046 11257 ... %e A062105 17303 ... %e A062105 ... %e A062105 Formatted as a triangle: %e A062105 1, %e A062105 1, 2, %e A062105 1, 3, 5, %e A062105 1, 3, 8, 13, %e A062105 1, 3, 9, 22, 35, %e A062105 1, 3, 9, 26, 61, 96, %e A062105 1, 3, 9, 27, 75, 171, 267, %e A062105 1, 3, 9, 27, 80, 216, 483, 750, %e A062105 1, 3, 9, 27, 81, 236, 623, 1373, 2123, %e A062105 1, 3, 9, 27, 81, 242, 694, 1800, 3923, 6046, %e A062105 1, 3, 9, 27, 81, 243, 721, 2038, 5211, 11257, 17303, %e A062105 ... %p A062105 [seq(CPTVSeq(j),j=0..91)]; CPTVSeq := n -> ChessPawnTriangleV( (2+(n-((trinv(n)*(trinv(n)-1))/2))), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) ); %p A062105 ChessPawnTriangleV := proc(r,c) option remember; if(r < 2) then RETURN(0); fi; if(c < 1) then RETURN(0); fi; if(2 = r) then RETURN(1); fi; RETURN(ChessPawnTriangleV(r-1,c-1)+ChessPawnTriangleV(r-1,c)+ChessPawnTriangleV(r-1,c+1)); end; %p A062105 M:=12; T:=Array(0..M,0..M,0); %p A062105 T[0,0]:=1; T[1,1]:=1; %p A062105 for i from 1 to M do T[i,0]:=0; od: %p A062105 for n from 2 to M do for k from 1 to n do %p A062105 T[n,k]:= T[n,k-1]+T[n-1,k-1]+T[n-2,k-1]; %p A062105 od: od; %p A062105 rh:=n->[seq(T[n,k],k=0..n)]; %p A062105 for n from 0 to M do lprint(rh(n)); od: # _N. J. A. Sloane_, Apr 11 2020 %t A062105 T[n_, k_] := T[n, k] = If[n < 1 || k < 1, 0, If[n == 1, 1, T[n - 1, k - 1] + T[n - 1, k] + T[n - 1, k + 1]]]; Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Mar 04 2016, adapted from PARI *) %o A062105 (PARI) T(n,k)=if(n<1 || k<1,0,if(n==1,1,T(n-1,k-1)+T(n-1,k)+T(n-1,k+1))) %Y A062105 A005773 gives the left column of the table. A000244 (powers of 3) gives the diagonal of the table. Variant of A062104. Cf. also A062103, A020474, A217536. %K A062105 nonn,tabl %O A062105 0,3 %A A062105 _Antti Karttunen_, May 30 2001 %E A062105 Edited by _N. J. A. Sloane_, May 22 2014