cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062134 Triangle of coefficients of polynomials (rising powers) useful for convolutions of A001333(n+1), n >= 0 (associated Pell numbers).

Original entry on oeis.org

1, 2, 0, 8, 24, 16, 336, 832, 576, 128, 12480, 28480, 23680, 8960, 1280, 481920, 1208832, 1167360, 552960, 130560, 12288, 22786560, 61834752, 65709056, 35911680, 10895360, 1763328, 118784, 1280885760, 3645444096
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials pPL1(n,x) := Sum_{m=0..n} A062133(n,m)*x^m and pPL2(n,x) := Sum_{m=0..n} a(n,m)*x^m appear in the k-fold convolution of the associated Pell numbers PL(n) := A001333(n+1), n >= 0, as follows: PL(k; n) := A054458(n+k,k) = (2*pPL1(k,n)*PL(n+1)+pPL2(k,n)*PL(n))/(k!*8^k), k >= 0.

Examples

			Triangle begins:
  {1};
  {2,0};
  {8,24,16};
  {336,832,576,128};
  ...
pPL1(1,n) = 1+2*n.
pPL2(1,n) = 2.
PL(1; n) = A054459(n) = ((1+2*n)*PL(n+1)+PL(n))/4.
		

Crossrefs

Cf. A062133(n, m) (companion triangle), A054458(n, m) (convolution triangle).