A062135 Odd-numbered columns of Losanitsch triangle A034851 formatted as triangle with an additional first column.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 6, 3, 1, 0, 3, 10, 12, 4, 1, 0, 3, 19, 28, 20, 5, 1, 0, 4, 28, 66, 60, 30, 6, 1, 0, 4, 44, 126, 170, 110, 42, 7, 1, 0, 5, 60, 236, 396, 365, 182, 56, 8, 1, 0, 5, 85, 396, 868, 1001, 693, 280, 72, 9, 1
Offset: 0
Examples
Triangle begins: {1}; {0,1}; {0,1,1}; {0,2,2,1}; ... Pe(4,x^2)=1+6*x^2+x^4.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows n = 0..150, flattened)
Programs
-
Mathematica
t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2; Flatten[Table[t[n - 1 + m, n - m], {n, 0, 12}, {m, 0, n}]] (* Michael De Vlieger, Sep 28 2024, after Jean-François Alcover at A034851 *)
Formula
T(n, m) = 0 if n= 1; T(n, m) = T(n-1, m)+sum(T(k, m-1), k=m-1..n-1) if n+m even and T(n, m) = T(n-1, m)+sum(T(k, m-1), k=m-1..n-1)-binomial((n+m-3)/2, m-1) if n+m odd, n >= m >= 1.
Extensions
More terms from Michael De Vlieger, Sep 28 2024
Comments