cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062135 Odd-numbered columns of Losanitsch triangle A034851 formatted as triangle with an additional first column.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 6, 3, 1, 0, 3, 10, 12, 4, 1, 0, 3, 19, 28, 20, 5, 1, 0, 4, 28, 66, 60, 30, 6, 1, 0, 4, 44, 126, 170, 110, 42, 7, 1, 0, 5, 60, 236, 396, 365, 182, 56, 8, 1, 0, 5, 85, 396, 868, 1001, 693, 280, 72, 9, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Because the sequence of column m=2*k, k >= 1, of A034851 is the partial sum sequence of the one of column m=2*k-1 the present triangle is essentially Losanitsch's triangle A034851.
Row sums give A051450 with A051450(0) := 1. Column sequences (without leading zeros) are for m=0..6: A000007, A008619, A005993, A005995, A018211, A018213, A062136.

Examples

			Triangle begins:
  {1};
  {0,1};
  {0,1,1};
  {0,2,2,1};
  ...
Pe(4,x^2)=1+6*x^2+x^4.
		

Crossrefs

Programs

  • Mathematica
    t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2; Flatten[Table[t[n - 1 + m, n - m], {n, 0, 12}, {m, 0, n}]] (* Michael De Vlieger, Sep 28 2024, after Jean-François Alcover at A034851  *)

Formula

T(n, m) = A034851(n-1+m, n-m), n >= m >= 0; A034851(n-1, n) := 0, n >= 1, A034851(-1, 0) := 1.
T(n, m) = 0 if n= 1; T(n, m) = T(n-1, m)+sum(T(k, m-1), k=m-1..n-1) if n+m even and T(n, m) = T(n-1, m)+sum(T(k, m-1), k=m-1..n-1)-binomial((n+m-3)/2, m-1) if n+m odd, n >= m >= 1.
G.f. for column m: x^m*Pe(m, x^2)/(((1-x)^(2*m))*(1+x)^m), m >= 0, with Pe(m, x^2)= sum(A034839(m, k)*x^(2*k), k=0..floor(n/2)), the row polynomial of array A034839 (even-indexed entries of the rows of Pascal's triangle).

Extensions

More terms from Michael De Vlieger, Sep 28 2024