cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062136 Twelfth column of Losanitsch's triangle A034851 (formatted as lower triangular matrix).

This page as a plain text file.
%I A062136 #33 Aug 24 2025 16:34:59
%S A062136 1,6,42,182,693,2184,6216,15912,37854,83980,176484,352716,676270,
%T A062136 1248072,2229096,3863080,6519591,10737090,17299646,27313650,42337659,
%U A062136 64512240,96770544,143048880,208616044,300402648,427500360,601661144,838033836,1155900720,1579738736
%N A062136 Twelfth column of Losanitsch's triangle A034851 (formatted as lower triangular matrix).
%C A062136 Also seventh column (m=6) of triangle A062135.
%C A062136 Number of homeomorphically irreducible (or series-reduced) trees (no vertices of degree 2) with n+9 leaves which become tree P(7) (path on 7 nodes (vertices) or 6 edges (links) when all leaves are omitted. A leave is an edge together with a node of degree 1 at one end). Proof by Polya enumeration. See illustration for A034851.
%H A062136 G. C. Greubel, <a href="/A062136/b062136.txt">Table of n, a(n) for n = 0..1000</a>
%H A062136 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A062136 G.f.: Pe(6, x^2)/((1-x)^(2*6)*(1+x)^6), with Pe(6, x^2) := Sum_{m=0..3} A034839(6, m)*x^(2*m) = 1+15*x^2+15*x^4+x^6.
%F A062136 a(n) = A034851(n+11,11).
%F A062136 a(2n+1) = A001288(2n+12)/2; a(2n) = (A001288(2n+11)+A000389(n+5))/2. - _Gary W. Adamson_, Dec 15 2010
%F A062136 a(n) = (1/(2*11!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)*(n+10)*(n+11) + (1/15)*(1/2^9)*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*(1/2)*(1+(-1)^n). - _Yosu Yurramendi_, Jun 24 2013
%t A062136 Table[(1/(2*11!))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n), {n, 0, 50}] (* _G. C. Greubel_, Nov 24 2017 *)
%o A062136 (PARI) for(n=0,50, print1((1/(2*11!))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n), ", ")) \\ _G. C. Greubel_, Nov 24 2017
%o A062136 (Magma) [(1/(2*Factorial(11)))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n): n in [0..30]]; // _G. C. Greubel_, Nov 24 2017
%Y A062136 Cf. A018213.
%K A062136 nonn,easy,changed
%O A062136 0,2
%A A062136 _Wolfdieter Lang_, Jun 19 2001