This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062140 #19 Mar 17 2021 04:18:18 %S A062140 1,5,-1,30,-12,1,210,-126,21,-1,1680,-1344,336,-32,1,15120,-15120, %T A062140 5040,-720,45,-1,151200,-181440,75600,-14400,1350,-60,1,1663200, %U A062140 -2328480,1164240,-277200,34650,-2310,77,-1,19958400,-31933440 %N A062140 Coefficient triangle of generalized Laguerre polynomials n!*L(n,4,x) (rising powers of x). %C A062140 The row polynomials s(n,x) := n!*L(n,4,x)= sum(a(n,m)*x^m,m=0..n) have g.f. exp(-z*x/(1-z))/(1-z)^5. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials p(n,x)=sum(|A008297(n,m)|*(-x)^m, m=1..n) and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference). %H A062140 Indranil Ghosh, <a href="/A062140/b062140.txt">Rows 0..125</a> %H A062140 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a> %F A062140 T(n, m) = ((-1)^m)*n!*binomial(n+4, n-m)/m!. %F A062140 E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^5), m >= 0. %e A062140 Triangle begins: %e A062140 {1}; %e A062140 {5,-1}; %e A062140 {30,-12,1}; %e A062140 {210,-126,21,-1}; %e A062140 ... %e A062140 2!*L(2,4,x)=30-12*x+x^2. %t A062140 Flatten[Table[((-1)^m)*n!*Binomial[n+4,n-m]/m!,{n,0,11},{m,0,n}]] (* _Indranil Ghosh_, Feb 23 2017 *) %o A062140 (Python) %o A062140 import math %o A062140 f=math.factorial %o A062140 def C(n,r): %o A062140 return f(n)//f(r)//f(n-r) %o A062140 i=0 %o A062140 for n in range(26): %o A062140 for m in range(n+1): %o A062140 print(i, (-1)**m*f(n)*C(n+4,n-m)//f(m)) %o A062140 i+=1 # _Indranil Ghosh_, Feb 23 2017 %o A062140 (PARI) row(n) = Vecrev(n!*pollaguerre(n, 4)); \\ _Michel Marcus_, Feb 06 2021 %Y A062140 For m=0..5 the (unsigned) columns give A001720(n+4), A062199, A062260-A062263. The row sums (signed) give A062265, the row sums (unsigned) give A062266. %Y A062140 Cf. A021009, A062137-A062139, A066667. %K A062140 sign,easy,tabl %O A062140 0,2 %A A062140 _Wolfdieter Lang_, Jun 19 2001