cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062142 Fourth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).

This page as a plain text file.
%I A062142 #28 Aug 09 2022 02:29:26
%S A062142 1,28,560,10080,176400,3104640,55883520,1037836800,19978358400,
%T A062142 399567168000,8310997094400,179819755315200,4045944494592000,
%U A062142 94612855873536000,2297740785500160000,57903067794604032000
%N A062142 Fourth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).
%H A062142 Indranil Ghosh, <a href="/A062142/b062142.txt">Table of n, a(n) for n = 0..400</a>
%H A062142 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>
%F A062142 a(n) = (n+3)!*binomial(n+6, 6)/3!; e.g.f.: (1 + 18*x + 45*x^2 + 20*x^3)/(1-x)^10.
%F A062142 If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=1..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j), then a(n-3) = (-1)^(n-1)*f(n,3,-7), (n>=3). - _Milan Janjic_, Mar 01 2009
%e A062142 a(3) = (3+3)!*binomial(3+6,6)/3! = (720*84)/6 = 10080. - _Indranil Ghosh_, Feb 23 2017
%t A062142 Table[(n+3)!*Binomial[n+6,6]/3!,{n,0,15}] (* _Indranil Ghosh_, Feb 23 2017 *)
%o A062142 (Sage) [binomial(n,6)*factorial(n-3)/factorial(3) for n in range(6, 22)] # _Zerinvary Lajos_, Jul 07 2009
%o A062142 (PARI) a(n) =(n+3)!*binomial(n+6,6)/3! \\ _Indranil Ghosh_, Feb 23 2017
%o A062142 (Python)
%o A062142 import math
%o A062142 f=math.factorial
%o A062142 def C(n,r):
%o A062142     return f(n)/f(r)/f(n-r)
%o A062142 def A062142(n):return f(n+3)*C(n+6,6)/f(3) # _Indranil Ghosh_, Feb 23 2017
%o A062142 (Magma) [Factorial(n+3)*Binomial(n+6,6)/6: n in [0..20]]; // _G. C. Greubel_, May 12 2018
%Y A062142 Cf. A062137, A062141.
%K A062142 nonn,easy
%O A062142 0,2
%A A062142 _Wolfdieter Lang_, Jun 19 2001