This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062147 #38 Jul 31 2024 09:47:24 %S A062147 1,5,31,229,1961,19081,207775,2501801,32989969,472630861,7307593151, %T A062147 121247816845,2148321709561,40476722545169,807927483311551, %U A062147 17028146983530961,377844723929464865,8803698102396787861,214877019857456672479,5482159931449737760181 %N A062147 Row sums of unsigned triangle A062137 (generalized a=3 Laguerre). %H A062147 Vincenzo Librandi, <a href="/A062147/b062147.txt">Table of n, a(n) for n = 0..200</a> %H A062147 Luis Verde-Star, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Verde/verde4.html">A Matrix Approach to Generalized Delannoy and Schröder Arrays</a>, J. Int. Seq., Vol. 24 (2021), Article 21.4.1. %H A062147 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a> %F A062147 E.g.f.: exp(x/(1-x))/(1-x)^4. %F A062147 a(n) = Sum_{m=0..n} n!*binomial(n+3, n-m)/m!. %F A062147 a(n) = (2*n+3)*a(n-1) - (n-1)*(n+2)*a(n-2). - _Vaclav Kotesovec_, Oct 11 2012 %F A062147 a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+7/4)/sqrt(2). - _Vaclav Kotesovec_, Oct 11 2012 %F A062147 a(n) = n!*LaguerreL(n, 3, -1). - _G. C. Greubel_, Mar 10 2021 %p A062147 A062147 := n -> n!*simplify(LaguerreL(n,3,-1), 'LaguerreL'); %p A062147 seq(A062147(n), n = 0 .. 30); # _G. C. Greubel_, Mar 10 2021 %t A062147 Table[Sum[n!*Binomial[n+3,n-k]/k!,{k,0,n}],{n,0,20}] %t A062147 (* or *) %t A062147 Table[n!*SeriesCoefficient[E^(x/(1-x))/(1-x)^4,{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 11 2012 *) %o A062147 (PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(x/(1-x))/(1-x)^4)) \\ _Joerg Arndt_, May 06 2013 %o A062147 (PARI) a(n) = vecsum(apply(abs,Vec(n!*pollaguerre(n, 3)))); \\ _Michel Marcus_, Feb 06 2021 %o A062147 (Magma) [Factorial(n)*(&+[Binomial(n+3,n-m)/Factorial(m): m in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Feb 06 2018 %o A062147 (Sage) [factorial(n)*gen_laguerre(n, 3, -1) for n in (0..30)] # _G. C. Greubel_, Mar 10 2021 %Y A062147 Cf. A062137, A216294. %K A062147 nonn,easy %O A062147 0,2 %A A062147 _Wolfdieter Lang_, Jun 19 2001