This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062154 #14 Aug 18 2024 02:01:02 %S A062154 1,0,2,1,0,1,13,18,6,0,0,18,189,450,360,90,0,0,6,450,4842,16380,22140, %T A062154 12600,2520,0,0,0,360,16380,190080,832950,1631700,1537200,680400, %U A062154 113400,0,0,0,90,22140,832950,10520010,56609280,147533400,200377800 %N A062154 Number T(n,m) of n X m matrices over {0,1,2} with all row and column sums equal to 1 or 2, m=0,..,2*n. %D A062154 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problem 3.4.15). %H A062154 Andrew Howroyd, <a href="/A062154/b062154.txt">Table of n, a(n) for n = 0..960</a> (rows 0..30) %F A062154 Sum_{n >= 0, m >= 0} T(n, m)*x^n/n!*y^m/m! = 1/sqrt(1-x*y)*exp(x*y/2+1/(1-x*y)*(x*y+x^2*y/2+x*y^2/2)). %F A062154 Sum_{n >= 0, m >= 0} T(n, m)*x^n/n!*y^m/m! = 1+(1/2*y^2+2*y)*x+(1/8*y^4+3/2*y^3+13/4*y^2+1/2*y)*x^2+(1/48*y^6+1/2*y^5+25/8*y^4+21/4*y^3+3/2*y^2)*x^3+... %e A062154 Triangle begins: %e A062154 [0] 1; %e A062154 [1] 0, 2, 1; %e A062154 [2] 0, 1, 13, 18, 6; %e A062154 [3] 0, 0, 18, 189, 450, 360, 90; %e A062154 [4] 0, 0, 6, 450, 4842, 16380, 22140, 12600, 2520; %e A062154 [5] 0, 0, 0, 360, 16380, 190080, 832950, 1631700, 1537200, 680400, 113400; %e A062154 [6] 0, 0, 0, 90, 22140, 832950, 10520010, 56609280, 147533400, 200377800, 144585000, 52390800, 7484400; %e A062154 T(2, 2)=13, i.e. there are 13 2 X 2 matrices over {0, 1, 2} with all row and column sums equal to 1 or 2: [0 1 / 0 1], [0 1 / 0 2], [0 2 / 1 0], [1 0 / 1 0], [1 1 / 1 1], [1 1 / 2 0], [2 0 / 1 0], [1 1 / 2 0], [1 0 / 2 0], [0 1 / 0 2], [1 1 / 0 1], [1 0 / 1 1], [0 1 / 0 2]. %o A062154 (PARI) %o A062154 Row(n)={Vecrev(serlaplace(n!*polcoef((1/sqrt(1-x*y + O(x*x^n))*exp(x*y/2+1/(1-x*y)*(x*y+x^2*y/2+x*y^2/2) + O(x*x^n))), n)))} %o A062154 { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Feb 03 2021 %Y A062154 Row sums are A062155. %Y A062154 Main diagonal is A062156. %Y A062154 Final terms of each row are A000680. %K A062154 nonn,tabf,easy %O A062154 0,3 %A A062154 _Vladeta Jovovic_, Jun 06 2001