This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062157 #46 Nov 27 2024 10:05:31 %S A062157 0,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1, %T A062157 -1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1, %U A062157 1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1 %N A062157 a(n) = 0^n - (-1)^n. %C A062157 Also the numerators of the series expansion of log(1+x). Denominators are A028310. - _Robert G. Wilson v_, Aug 14 2015 %H A062157 Antti Karttunen, <a href="/A062157/b062157.txt">Table of n, a(n) for n = 0..10000</a> %H A062157 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet eta function</a> %H A062157 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (-1). %F A062157 a(n) = A000007(n) - A033999(n) = A062160(0, n). %F A062157 G.f.: x/(1+x). %F A062157 Euler transform of length 2 sequence [-1, 1]. - _Michael Somos_, Jul 05 2009 %F A062157 Moebius transform is length 2 sequence [1, -2]. - _Michael Somos_, Jul 05 2009 %F A062157 a(n) is multiplicative with a(2^e) = -1 if e > 0, a(p^e) = 1 if p > 2. - _Michael Somos_, Jul 05 2009 %F A062157 Dirichlet g.f.: zeta(s) * (1 - 2^(1-s)). - _Michael Somos_, Jul 05 2009 %F A062157 Also, Dirichlet g.f.: eta(s). - _Ralf Stephan_, Mar 25 2015 %F A062157 E.g.f.: 1 - exp(-x). - _Alejandro J. Becerra Jr._, Feb 16 2021 %e A062157 G.f. = x - x^2 + x^3 - x^4 + x^5 - x^6 + x^7 - x^8 + x^9 - x^10 + ... - _Michael Somos_, Feb 20 2024 %t A062157 PadRight[{0},120,{-1,1}] (* _Harvey P. Dale_, Aug 20 2012 *) %t A062157 Join[{0},LinearRecurrence[{-1},{1},101]] (* _Ray Chandler_, Aug 12 2015 *) %t A062157 f[n_] := 0^n - (-1)^n; f[0] = 0; Array[f, 105, 0] (* or *) %t A062157 CoefficientList[ Series[ x/(1 + x), {x, 0, 80}], x] (* or *) %t A062157 Numerator@ CoefficientList[ Series[ Log[1 + x], {x, 0, 80}], x] (* _Robert G. Wilson v_, Aug 14 2015 *) %o A062157 (PARI) {a(n) = if( n<1, 0, -(-1)^n )}; /* _Michael Somos_, Jul 05 2009 */ %o A062157 (Magma) [0^n-(-1)^n: n in [0..100]]; // _Vincenzo Librandi_, Aug 15 2015 %o A062157 (Magma) [0] cat &cat[ [1, -1]: n in [1..80] ]; // _Vincenzo Librandi_, Aug 15 2015 %Y A062157 Convolution inverse of A019590. %Y A062157 Cf. A000007, A028310, A033999, A062160. %K A062157 easy,sign,mult %O A062157 0,1 %A A062157 _Henry Bottomley_, Jun 08 2001