This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062161 #41 Jan 07 2025 05:45:03 %S A062161 0,1,2,4,12,36,142,624,3192,18256,116282,814144,6219972,51475776, %T A062161 458790022,4381112064,44625674352,482962852096,5534347077362, %U A062161 66942218896384,852334810990332,11394877025289216,159592488559874302,2336793875186479104,35703580441464231912 %N A062161 Boustrophedon transform of n mod 2. %H A062161 Reinhard Zumkeller, <a href="/A062161/b062161.txt">Table of n, a(n) for n = 0..400</a> %H A062161 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a> %H A062161 J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A062161 Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>. %H A062161 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>. %F A062161 a(2n) = A009747(n), a(2n+1) = A002084(n). %F A062161 E.g.f.: (sec(x)+tan(x))*sinh(x); a(n)=(A000667(n)-A062162(n))/2. - _Paul Barry_, Jan 21 2005 %F A062161 a(n) = Sum{k, k>=0} binomial(n, 2k+1)*A000111(n-2k-1). - _Philippe Deléham_, Aug 28 2005 %F A062161 a(n) = Sum_{k=0..n} A109449(n,k) * (k mod 2). - _Reinhard Zumkeller_, Nov 03 2013 [corrected by _Jason Yuen_, Jan 07 2025] %t A062161 With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])Sinh[x],{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Feb 16 2013 *) %o A062161 (Sage) # Generalized algorithm of L. Seidel (1877) %o A062161 def A062161_list(n) : %o A062161 R = []; A = {-1:0, 0:0} %o A062161 k = 0; e = 1 %o A062161 for i in range(n) : %o A062161 Am = 1 if e == -1 else 0 %o A062161 A[k + e] = 0 %o A062161 e = -e %o A062161 for j in (0..i) : %o A062161 Am += A[k] %o A062161 A[k] = Am %o A062161 k += e %o A062161 # print [A[z] for z in (-i//2..i//2)] %o A062161 R.append(A[e*i//2]) %o A062161 return R %o A062161 A062161_list(10) # _Peter Luschny_, Jun 02 2012 %o A062161 (Haskell) %o A062161 a062161 n = sum $ zipWith (*) (a109449_row n) $ cycle [0,1] %o A062161 -- _Reinhard Zumkeller_, Nov 03 2013 %o A062161 (Python) %o A062161 from itertools import accumulate, islice %o A062161 def A062161_gen(): # generator of terms %o A062161 blist, m = tuple(), 1 %o A062161 while True: %o A062161 yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1] %o A062161 A062161_list = list(islice(A062161_gen(),40)) # _Chai Wah Wu_, Jun 12 2022 %Y A062161 Cf. A000035, A062272. %K A062161 nonn,easy %O A062161 0,3 %A A062161 _Frank Ellermann_, Jun 10 2001