This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062238 #13 Dec 26 2022 13:04:56 %S A062238 15,25,125,1537,3977,11371,38117,110317,117197,123679,143323,146137, %T A062238 179297,197513,316619,390913,397139,399797,485357,779917,797191, %U A062238 990919,1110691,1178951,1483117,1723717,1813733,2165299,2273099,2369777,2947969,3035171,3099013,3183113 %N A062238 Composite numbers which contain their largest proper divisor as a substring. %H A062238 Michel Marcus, <a href="/A062238/b062238.txt">Table of n, a(n) for n = 1..272</a> %e A062238 3{97}7 = 97*41. %t A062238 Do[ If[ !PrimeQ[ n ] && StringPosition[ ToString[ n ], ToString[ Divisors[ n ] [ [ -2 ] ] ] ] != {}, Print[ n ] ], {n, 2, 10^7} ] %t A062238 Select[Range[319*10^4],CompositeQ[#]&&SequenceCount[IntegerDigits[ #],IntegerDigits[ Divisors[#][[-2]]]]>0&] (* _Harvey P. Dale_, Dec 26 2022 *) %o A062238 (PARI) gpd(n) = if(n==1, 1, n/factor(n)[1, 1]); \\ A032742 %o A062238 issub(vv, v) = {for (i=1, #v - #vv + 1, if (vector(#vv, k, v[k+i-1]) == vv, return(1)););} %o A062238 isok(n) = if ((n>1) && !isprime(n), issub(digits(gpd(n)), digits(n))); \\ _Michel Marcus_, Dec 31 2020 %Y A062238 Cf. A002808 (composite numbers), A032742. %K A062238 base,nonn %O A062238 1,1 %A A062238 _Erich Friedman_, Jun 30 2001 %E A062238 More terms from _Robert G. Wilson v_, Aug 08 2001 %E A062238 More terms from _Michel Marcus_, Dec 31 2020 %E A062238 Clarified definition at the suggestion of _Harvey P. Dale_. - _N. J. A. Sloane_, Dec 26 2022