This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062262 #18 Mar 18 2025 15:45:23 %S A062262 1,45,1350,34650,831600,19459440,454053600,10702692000,256864608000, %T A062262 6307453152000,158947819430400,4118193503424000,109818493424640000, %U A062262 3015784780968960000,85303626661693440000 %N A062262 Fifth (unsigned) column sequence of triangle A062140 (generalized a=4 Laguerre). %H A062262 Harry J. Smith, <a href="/A062262/b062262.txt">Table of n, a(n) for n = 0..100</a> %H A062262 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a> %F A062262 E.g.f.: (1+32*x+168*x^2+224*x^3+70*x^4)/(1-x)^13. %F A062262 a(n) = A062140(n+4, 4). %F A062262 a(n) = (n+4)!*binomial(n+8, 8)/4!. %F A062262 If we define f(n,i,x)= Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)* Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-4) = (-1)^n*f(n,4,-9), (n>=4). - _Milan Janjic_, Mar 01 2009 %t A062262 Table[(n+4)!*Binomial[n+8, 8]/4!, {n, 0, 30}] (* _G. C. Greubel_, May 13 2018 *) %t A062262 With[{nn=20},CoefficientList[Series[(1+32x+168x^2+224x^3+70x^4)/(1-x)^13,{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Mar 18 2025 *) %o A062262 (PARI) { f=6; for (n=0, 100, f*=n + 4; write("b062262.txt", n, " ", f*binomial(n + 8, 8)/24) ) } \\ _Harry J. Smith_, Aug 03 2009 %o A062262 (Magma) [Factorial(n+4)*Binomial(n+8,8)/24: n in [0..30]]; // _G. C. Greubel_, May 13 2018 %Y A062262 Cf. A001720, A062199, A062260, A062261. %K A062262 nonn,easy %O A062262 0,2 %A A062262 _Wolfdieter Lang_, Jun 19 2001