This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062264 #23 Mar 04 2025 08:12:44 %S A062264 1,1,5,1,12,15,1,21,63,35,1,32,168,224,70,1,45,360,840,630,126,1,60, %T A062264 675,2400,3150,1512,210,1,77,1155,5775,11550,9702,3234,330,1,96,1848, %U A062264 12320,34650,44352,25872,6336,495,1,117,2808,24024,90090,162162,144144,61776,11583,715 %N A062264 Coefficient triangle of certain polynomials N(4; m,x). %C A062264 The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=4) Laguerre triangle L(4; n+m,m) = A062140(n+m,m), n >= 0, is N(4; m,x)/(1-x)^(5+2*m), with the row polynomials N(4; m,x) := Sum_{k=0..m} T(m,k)*x^k. %H A062264 G. C. Greubel, <a href="/A062264/b062264.txt">Rows n = 0..50 of the triangle, flattened</a> %F A062264 T(m, k) = [x^k] N(4; m, x), with N(4; m, x) = ((1-x)^(2*m+5))*(d^m/dx^m)((x^m)/(m!*(1-x)^(m+5))). %F A062264 N(4; m, x) = Sum_{j=0..m} (binomial(m, j)*(2*m+4-j)!/((m+4)!*(m-j)!)*(x^(m-j))*(1-x)^j). %F A062264 From _G. C. Greubel_, Mar 03 2025: (Start) %F A062264 T(n, k) = binomial(n,k)*binomial(n+4,k). %F A062264 Sum_{k=0..n} (-1)^k*T(n, k) = (1/4)*( (1+(-1)^n)*(-1)^((n+2)/2)*(n^2 + 5*n - 2)*Catalan((n+2)/2)/(n+1) + 8*(1-(-1)^n)*(-1)^((n+1)/2)*Catalan((n+1)/2) ). (End) %e A062264 Triangle begins as: %e A062264 1; %e A062264 1, 5; %e A062264 1, 12, 15; %e A062264 1, 21, 63, 35; %e A062264 1, 32, 168, 224, 70; %e A062264 1, 45, 360, 840, 630, 126; %e A062264 1, 60, 675, 2400, 3150, 1512, 210; %e A062264 1, 77, 1155, 5775, 11550, 9702, 3234, 330; %e A062264 1, 96, 1848, 12320, 34650, 44352, 25872, 6336, 495; %e A062264 1, 117, 2808, 24024, 90090, 162162, 144144, 61776, 11583, 715; %e A062264 1, 140, 4095, 43680, 210210, 504504, 630630, 411840, 135135, 20020, 1001; %t A062264 A062264[n_, k_]:= Binomial[n,k]*Binomial[n+4,k]; %t A062264 Table[A062264[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 03 2025 *) %o A062264 (Magma) %o A062264 A062264:= func< n,k | Binomial(n,k)*Binomial(n+4,k) >; %o A062264 [A062264(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 03 2025 %o A062264 (SageMath) %o A062264 def A062264(n,k): return binomial(n,k)*binomial(n+4,k) %o A062264 print(flatten([[A062264(n,k) for k in range(n+1)] for n in range(13)])) # _G. C. Greubel_, Mar 03 2025 %Y A062264 Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), this sequence (c=5), A062190 (c=6). %Y A062264 Columns: A028347 (k=2), A104473 (k=3), A104474 (k=4), A104475 (k=5), A027814 (k=6), A103604 (k=7), A104476 (k=8), A104478 (k=9). %Y A062264 Diagonals: A000332 (k=n), A027810 (k=n-1), A105249 (k=n-2), A105250 (k=n-3), A105251 (k=n-4), A105252 (k=n-5), A105253 (k=n-6), A105254 (k=n-7). %Y A062264 Sums: A002694 (row). %K A062264 nonn,tabl %O A062264 0,3 %A A062264 _Wolfdieter Lang_, Jun 19 2001