This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062271 #15 Apr 19 2019 03:28:09 %S A062271 4,64,256,1024,16384,4194304,452984832,603979776,1073741824, %T A062271 64424509440,16698832846848,8906044184985600,2244323134616371200, %U A062271 4588393964104581120,24471434475224432640,32628579300299243520 %N A062271 Denominators in partial products of the twin prime constant. %D A062271 Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94. %D A062271 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20 %H A062271 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/hrdyltl/hrdyltl.html">Hardy-Littlewood Constants </a> [Broken link] %H A062271 Steven R. Finch, <a href="http://web.archive.org/web/20010614100031/http://www.mathsoft.com/asolve/constant/hrdyltl/hrdyltl.html">Hardy-Littlewood Constants </a> [From the Wayback machine] %F A062271 a(n)= a(n-1)*(p(n)-1)^2 / gcd( A062270(n), a(n-1)*(p(n)-1)^2 ) for n > 2. %e A062271 a(4)= 256= 2*2*4*4*6*6 / gcd( 3*1*5*3*7*5, 2*2*4*4*6*6 ). %Y A062271 A062270 (numerators), A005597 (decimal expansion). %K A062271 easy,nonn,frac %O A062271 2,1 %A A062271 _Frank Ellermann_, Jun 16 2001