cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062275 Array A(n, k) = n^k * k^n, n, k >= 0, read by antidiagonals.

This page as a plain text file.
%I A062275 #29 Jun 14 2018 18:49:12
%S A062275 1,0,0,0,1,0,0,2,2,0,0,3,16,3,0,0,4,72,72,4,0,0,5,256,729,256,5,0,0,6,
%T A062275 800,5184,5184,800,6,0,0,7,2304,30375,65536,30375,2304,7,0,0,8,6272,
%U A062275 157464,640000,640000,157464,6272,8,0,0,9,16384,750141,5308416,9765625
%N A062275 Array A(n, k) = n^k * k^n, n, k >= 0, read by antidiagonals.
%C A062275 Here 0^0 is defined to be 1. - _Wolfdieter Lang_, May 27 2018
%H A062275 Eric Chen, <a href="/A062275/b062275.txt">Table of n, a(n) for n = 0..5049 (first 100 antidiagonals)</a>
%F A062275 From _Wolfdieter Lang_, May 22 2018: (Start)
%F A062275 As a sequence: a(n) = A003992(n)*A004248(n).
%F A062275 As a triangle: T(n, k) = (n-k)^k * k^(n-k), for n >= 1 and k = 1..n. (End)
%e A062275 A(3, 2) = 3^2 * 2^3 = 9*8 = 72.
%e A062275 The array A(n, k) begins:
%e A062275 n\k 0 1   2   3    4     5      6      7       8        9       10 ...
%e A062275 0:  1 0   0   0    0     0      0      0       0        0        0 ...
%e A062275 1:  0 1   2   3    4     5      6      7       8        9       10 ...
%e A062275 2:  0 2  16  72  256   800   2304   6272   16384    41472   102400 ...
%e A062275 3:  0 3  72 729 5184 30375 157464 750141 3359232 14348907 59049000 ...
%e A062275 ...
%e A062275 The triangle T(n, k) begins:
%e A062275 n\k  0  1    2      3      4      5      6    7  8  9 ...
%e A062275 0:   1
%e A062275 1:   0  0
%e A062275 2:   0  1    0
%e A062275 3:   0  2    2      0
%e A062275 4:   0  3   16      3      0
%e A062275 5:   0  4   72     72      4      0
%e A062275 6:   0  5  256    729    256      5      0
%e A062275 7:   0  6  800   5184   5184    800      6    0
%e A062275 8:   0  7 2304  30375  65536  30375   2304    7  0
%e A062275 9:   0  8 6272 157464 640000 640000 157464 6272  8  0
%e A062275 ... - _Wolfdieter Lang_, May 22 2018
%t A062275 {{1}}~Join~Table[(#^k k^#) &[n - k], {n, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, May 24 2018 *)
%o A062275 (PARI) t1(n)=n-binomial(round(sqrt(2+2*n)), 2)
%o A062275 t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
%o A062275 a(n)=t1(n)^t2(n)*t2(n)^t1(n) \\ _Eric Chen_, Jun 09 2018
%Y A062275 Columns and rows of A, or columns and diagonals of T, include A000007, A001477, A007758, A062074, A062075 etc. Diagonals of A include A062206, A051443, A051490. Sum of rows of T are A062817(n), for n >= 1
%Y A062275 Cf. A055651, A055652, A303990.
%K A062275 nonn,tabl,easy
%O A062275 0,8
%A A062275 _Henry Bottomley_, Jul 02 2001