A062283 Square array read by descending antidiagonals: T(n,k) = floor(n^k/k^n).
1, 0, 2, 0, 1, 3, 0, 0, 1, 4, 0, 1, 1, 1, 5, 0, 1, 1, 0, 0, 6, 0, 1, 1, 1, 0, 0, 7, 0, 2, 3, 1, 0, 0, 0, 8, 0, 4, 6, 3, 1, 0, 0, 0, 9, 0, 6, 12, 6, 2, 0, 0, 0, 0, 10, 0, 10, 27, 16, 4, 1, 0, 0, 0, 0, 11, 0, 16, 59, 39, 11, 2, 0, 0, 0, 0, 0, 12, 0, 28, 133, 104, 33, 6, 1, 0, 0, 0, 0, 0, 13
Offset: 1
Examples
T(3,2) = floor(3^2/2^3) = floor(9/8) = 1.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (first 150 antidiagonals).
Programs
-
Mathematica
Table[Floor[k^(n-k+1)/(n-k+1)^k], {n, 15}, {k, n}] (* Paolo Xausa, May 06 2024 *)