This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062294 #15 Feb 16 2025 08:32:44 %S A062294 2,3,5,7,11,17,29,47,67,83,131,163,233,307,397,443,617,727,809,941, %T A062294 1063,1217,1399,1487,1579,1931,2029,2137,2237,2659,2777,3187,3659, %U A062294 3917,4549,4877,5197,5471,5981,6733,7207,7349,8039,8291,8543,9283,9689,10037 %N A062294 A B_2 sequence: a(n) is the smallest prime such that the pairwise sums of distinct elements are all distinct. %H A062294 Klaus Brockhaus, <a href="/A062294/b062294.txt">Table of n, a(n) for n = 1..3600</a> %H A062294 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/B2-Sequence.html">B2-Sequence</a> %H A062294 <a href="/index/Br#B_2">Index entries for B_2 sequences</a> %o A062294 (Python) %o A062294 from itertools import islice %o A062294 from sympy import nextprime %o A062294 def A062294_gen(): # generator of terms %o A062294 aset2, alist, k = set(), [], 0 %o A062294 while (k:=nextprime(k)): %o A062294 bset2 = set() %o A062294 for a in alist: %o A062294 if (b:=a+k) in aset2: %o A062294 break %o A062294 bset2.add(b) %o A062294 else: %o A062294 yield k %o A062294 alist.append(k) %o A062294 aset2.update(bset2) %o A062294 A062294_list = list(islice(A062294_gen(),30)) # _Chai Wah Wu_, Sep 11 2023 %Y A062294 Cf. A011185, A010672, A025582, A005282, A061781, A061784, A062292, A079848, A133096. %K A062294 nonn %O A062294 1,1 %A A062294 _Labos Elemer_, Jul 02 2001 %E A062294 Edited, corrected and extended by _Klaus Brockhaus_, Sep 17 2007