This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062295 #14 Feb 16 2025 08:32:44 %S A062295 1,4,9,16,25,36,64,81,100,169,256,289,441,484,576,625,841,1089,1296, %T A062295 1444,1936,2025,2401,2601,3136,4225,4356,4624,5329,5476,5776,6084, %U A062295 7569,9025,10201,11449,11664,12321,12996,13456,14400,16129,17956,20164,22201 %N A062295 A B_2 sequence: a(n) is the smallest square such that pairwise sums of not necessarily distinct elements are all distinct. %H A062295 Klaus Brockhaus, <a href="/A062295/b062295.txt">Table of n, a(n) for n = 1..4944</a> %H A062295 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/B2-Sequence.html">B2-Sequence</a> %H A062295 <a href="/index/Br#B_2">Index entries for B_2 sequences</a> %e A062295 36 is in the sequence since the pairwise sums of {1, 4, 9, 16, 25, 36} are all distinct: 2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 61, 72. %e A062295 49 is not in the sequence since 1 + 49 = 25 + 25. %o A062295 (Python) %o A062295 from itertools import count, islice %o A062295 def A062295_gen(): # generator of terms %o A062295 aset1, aset2, alist = set(), set(), [] %o A062295 for k in (n**2 for n in count(1)): %o A062295 bset2 = {k<<1} %o A062295 if (k<<1) not in aset2: %o A062295 for d in aset1: %o A062295 if (m:=d+k) in aset2: %o A062295 break %o A062295 bset2.add(m) %o A062295 else: %o A062295 yield k %o A062295 alist.append(k) %o A062295 aset1.add(k) %o A062295 aset2 |= bset2 %o A062295 A062295_list = list(islice(A062295_gen(),30)) # _Chai Wah Wu_, Sep 05 2023 %Y A062295 Cf. A000290, A011185, A010672, A025582, A005282, A062292, A133743, A133744. %K A062295 nonn %O A062295 1,2 %A A062295 _Labos Elemer_, Jul 02 2001 %E A062295 Edited, corrected and extended by _Klaus Brockhaus_, Sep 24 2007