This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062297 #20 Dec 23 2023 14:30:04 %S A062297 1,2,5,21,87,612,3649,35515,289927,377118,36947363,657510251, %T A062297 7736272845 %N A062297 Number of distinct Abelian subgroups of the symmetric group S_n. %H A062297 L. Naughton and G. Pfeiffer, <a href="http://arxiv.org/abs/1211.1911">Integer sequences realized by the subgroup pattern of the symmetric group</a>, arXiv:1211.1911 [math.GR], 2012-2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Naughton/naughton2.html">J. Int. Seq. 16 (2013) #13.5.8</a> %o A062297 (GAP) %o A062297 # GAP 4.4 %o A062297 LoadPackage("sonata");; %o A062297 for n in [2,3,4,5,6,7,8,9,10] do %o A062297 p := SymmetricGroup(n) ;; %o A062297 o := Order(p); %o A062297 s := Subgroups(p); %o A062297 f := Filtered(s, g -> IsAbelian(g)); %o A062297 a := Size(f); %o A062297 Print(a," ") ; %o A062297 od; # _R. J. Mathar_, May 24 2013 %Y A062297 Cf. A005432, A051625. %K A062297 nonn,more %O A062297 1,2 %A A062297 Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001 %E A062297 a(9)-a(13) added by Liam Naughton