This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062301 #17 Oct 02 2020 18:37:43 %S A062301 0,0,1,1,0,1,0,1,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,1, %T A062301 0,1,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0, %U A062301 0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1 %N A062301 Number of ways writing n-th prime as a sum of two primes. %C A062301 a(n) = 1 if and only if n is in A006512. - _Robert Israel_, Apr 04 2018 %H A062301 Muniru A Asiru, <a href="/A062301/b062301.txt">Table of n, a(n) for n = 1..3000</a> %p A062301 a:= n-> `if`(isprime(ithprime(n)-2), 1, 0): %p A062301 seq(a(n), n=1..105); # _Alois P. Heinz_, Oct 02 2020 %t A062301 Table[Sum[(PrimePi[Prime[n] - i] - PrimePi[Prime[n] - i - 1]) (PrimePi[i] - PrimePi[i - 1]), {i, Floor[Prime[n]/2]}], {n, 100}] (* _Wesley Ivan Hurt_, Apr 04 2018 *) %o A062301 (PARI) a(n) = isprime(prime(n) - 2) \\ _David A. Corneth_, Apr 04 2018 %o A062301 (GAP) P:=Filtered([1..1000],IsPrime);; a:=List(List(List(P, i -> Partitions(i,2)), k -> Filtered(k, i -> IsPrime(i[1]) and IsPrime(i[2]))),Length); # _Muniru A Asiru_, Apr 05 2018 %Y A062301 Equals A061358(A000040(n)). %Y A062301 Cf. A006512, A014092, A025584. %K A062301 nonn %O A062301 1,1 %A A062301 _Labos Elemer_, Jul 05 2001 %E A062301 Offset changed to 1 by _David A. Corneth_, Apr 04 2018