This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062319 #58 Aug 13 2025 21:29:55 %S A062319 1,1,3,4,9,6,49,8,25,19,121,12,325,14,225,256,65,18,703,20,861,484, %T A062319 529,24,1825,51,729,82,1653,30,29791,32,161,1156,1225,1296,5329,38, %U A062319 1521,1600,4961,42,79507,44,4005,4186,2209,48,9457,99,5151,2704,5565,54 %N A062319 Number of divisors of n^n, or of A000312(n). %C A062319 From _Gus Wiseman_, May 02 2021: (Start) %C A062319 Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are: %C A062319 (1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1) %C A062319 (1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5) %C A062319 (2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1) %C A062319 (3,1,1) (1,1,2,1) (1,1,5,1,1) %C A062319 (1,1,4,1) (1,5,1,1,1) %C A062319 (1,2,1,1) (5,1,1,1,1) %C A062319 (1,4,1,1) %C A062319 (2,1,1,1) %C A062319 (4,1,1,1) %C A062319 The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654. %C A062319 (End) %H A062319 Seiichi Manyama, <a href="/A062319/b062319.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Harry J. Smith) %F A062319 a(n) = A000005(A000312(n)). - _Enrique Pérez Herrero_, Nov 09 2010 %F A062319 a(2^n) = A002064(n). - _Gus Wiseman_, May 02 2021 %F A062319 a(prime(n)) = prime(n) + 1. - _Gus Wiseman_, May 02 2021 %F A062319 a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - _Gus Wiseman_, May 02 2021 %F A062319 a(n) = Sum_{d|n} n^omega(d) for n > 0. - _Seiichi Manyama_ May 12 2021 %e A062319 From _Gus Wiseman_, May 02 2021: (Start) %e A062319 The a(1) = 1 through a(5) = 6 divisors: %e A062319 1 1 1 1 1 %e A062319 2 3 2 5 %e A062319 4 9 4 25 %e A062319 27 8 125 %e A062319 16 625 %e A062319 32 3125 %e A062319 64 %e A062319 128 %e A062319 256 %e A062319 (End) %t A062319 A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* _Enrique Pérez Herrero_, Nov 09 2010 *) %t A062319 Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* _Harvey P. Dale_, Jun 06 2024 *) %o A062319 (PARI) je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je %o A062319 (PARI) { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ _Harry J. Smith_, Aug 04 2009 %o A062319 (PARI) a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ _Franklin T. Adams-Watters_, May 03 2011 %o A062319 (PARI) a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ _Seiichi Manyama_, May 12 2021 %o A062319 (Magma) [NumberOfDivisors(n^n): n in [0..60]]; // _Vincenzo Librandi_, Nov 09 2014 %o A062319 (Python) %o A062319 from math import prod %o A062319 from sympy import factorint %o A062319 def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # _Chai Wah Wu_, Jun 03 2021 %Y A062319 Cf. A046798, A077592, A035116. - _Enrique Pérez Herrero_, Nov 09 2010 %Y A062319 Number of divisors of A000312(n). %Y A062319 Taking Omega instead of sigma gives A066959. %Y A062319 Positions of squares are A173339. %Y A062319 Diagonal n = k of the array A343656. %Y A062319 A000005 counts divisors. %Y A062319 A059481 counts k-multisets of elements of {1..n}. %Y A062319 A334997 counts length-k strict chains of divisors of n. %Y A062319 A343658 counts k-multisets of divisors. %Y A062319 Pairwise coprimality: %Y A062319 - A018892 counts coprime pairs of divisors. %Y A062319 - A084422 counts pairwise coprime subsets of {1..n}. %Y A062319 - A100565 counts pairwise coprime triples of divisors. %Y A062319 - A225520 counts pairwise coprime sets of divisors. %Y A062319 - A343652 counts maximal pairwise coprime sets of divisors. %Y A062319 - A343653 counts pairwise coprime non-singleton sets of divisors > 1. %Y A062319 - A343654 counts pairwise coprime sets of divisors > 1. %Y A062319 Cf. A000169, A000272, A002064, A002109, A009998, A048691, A143773, A146291, A176029, A327527, A343657. %K A062319 easy,nonn %O A062319 0,3 %A A062319 _Jason Earls_, Jul 05 2001