This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062346 #41 Jan 16 2023 17:53:47 %S A062346 3,45,210,630,1485,3003,5460,9180,14535,21945,31878,44850,61425,82215, %T A062346 107880,139128,176715,221445,274170,335790,407253,489555,583740, %U A062346 690900,812175,948753,1101870,1272810,1462905,1673535,1906128,2162160,2443155 %N A062346 Consider 2n tennis players; a(n) is the number of matches needed to let every possible pair play each other. %C A062346 Number of matchings of size two (edges) in a complete graph on 2n vertices. %H A062346 Vincenzo Librandi, <a href="/A062346/b062346.txt">Table of n, a(n) for n = 2..1000</a> %H A062346 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A062346 a(n) = n*(4*n^3 - 12*n^2 + 11*n - 3)/2. - Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006 %F A062346 a(n+1) = (2*n+2)*(2*n+1)*(2*n)*(2*n-1)/8. - _James Mahoney_, Oct 19 2011 %F A062346 G.f.: 3*x^2*(1 + 10*x + 5*x^2)/(1 - x)^5. - _Vincenzo Librandi_, Oct 13 2013 %F A062346 a(n) = binomial(2*n^2-3*n+1, 2). - _Wesley Ivan Hurt_, Oct 14 2013 %F A062346 a(n) = A014105(n-1)*(A014105(n-1)-1)/2. - _Bruno Berselli_, Dec 28 2016 %e A062346 a(2)=3: given players a,b,c,d, the matches needed are (ab,cd), (ac,bd), (ad,bc). %e A062346 For example, for the K_4 on vertices {0,1,2,3} the possible matchings of size two are: {{0,1}, {2,3}}, {{0,3},{1,2}} and {{0,2},{1,3}}. %p A062346 A062346:=n->n*(n-1)*(2*n-3)*(2*n-1)/2; seq(A062346(k),k=2..100); # _Wesley Ivan Hurt_, Oct 14 2013 %t A062346 CoefficientList[Series[3 (1 + 10 x + 5 x^2)/(1 - x)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 13 2013 *) %t A062346 LinearRecurrence[{5,-10,10,-5,1},{3,45,210,630,1485},40] (* _Harvey P. Dale_, Nov 22 2022 *) %o A062346 (PARI) a(n) = n*(n-1)*(2*n-3)*(2*n-1)/2; \\ _Joerg Arndt_, Oct 13 2013 %o A062346 (Magma) [n*(n-1)*(2*n-3)*(2*n-1)/2: n in [2..40]]; // _Vincenzo Librandi_, Oct 13 2013 %Y A062346 Cf. A014105. %K A062346 nonn,easy %O A062346 2,1 %A A062346 _Michel ten Voorde_, Jul 06 2001 %E A062346 More terms from Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006