A062515 Leading least prime signatures, ordered by forming the product of primorials greater than 2 with multiplicities given by the canonical sequence of partitions.
1, 6, 30, 36, 210, 180, 216, 2310, 1260, 900, 1080, 1296, 30030, 13860, 6300, 7560, 5400, 6480, 7776, 510510, 180180, 69300, 83160, 44100, 37800, 45360, 27000, 32400, 38880, 46656, 9699690, 3063060, 900900, 1081080, 485100, 415800, 498960, 264600, 189000
Offset: 0
Examples
Values in A025487 can be generated via powers of two as follows: 1 2 4,6 8,12 16,24,30 32,48,60,36 64,96,120,72 128,192,240,144,210,180,216 a(3) = 36 because we can write [1,1] and associate this exponent vector with 6*6
Links
- Jack W Grahl, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
import Data.List(inits) primes :: [Integer] primes = 2 : 3 : filter (\a -> all (not . divides a) (takeWhile (\x -> x <= a `div` 2) primes)) [4..] where divides a b = a `mod` b == 0 primorials :: [Integer] primorials = map product $ inits primes partitions :: [[Integer]] partitions = concat $ map (partitions_of_n) [0..] partitions_of_n :: Integer -> [[Integer]] partitions_of_n n = partitions_at_most n n partitions_at_most :: Integer -> Integer -> [[Integer]] partitions_at_most _ 0 = [[]] partitions_at_most 0 _ = [] partitions_at_most m n = concat $ map (\k -> map ([k] ++) (partitions_at_most k (n-k))) ( reverse [1..(min m n)]) a062515 :: [Integer] a062515 = map primorial_signature partitions where primorial_signature p = product $ map ((drop 1 primorials) !!) (map fromIntegral p) -- Jack W Grahl, Jul 06 2018
Extensions
Clarified and extended by Jack W Grahl, Jul 06 2018
Comments