This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062533 #24 Aug 01 2024 01:29:34 %S A062533 1,6,8,12,20,18,20,24,24,24,42,32,40,36,36,48,44,40,60,54,64,56,72,60, %T A062533 72,60,48,72,88,72,96,110,80,100,84,108,72,92,120,112,84,96,120,104, %U A062533 132,80,156,108,120,116,120,144,160,108,96,132,168,160,132,180,140,168 %N A062533 a(n) = A000010(A014076(n)). %H A062533 G. C. Greubel, <a href="/A062533/b062533.txt">Table of n, a(n) for n = 1..1000</a> %t A062533 A014076 := Select[Range[1, 350, 2], PrimeOmega[#] != 1 &]; Table[ EulerPhi[A014076[[n]]], {n, 1, 50}] (* _G. C. Greubel_, Sep 17 2017 *) %o A062533 (PARI) je=[]; forstep(n=1,301,2, if(isprime(n), n+1,je=concat(je,eulerphi(n)))); je %o A062533 (Python) %o A062533 from sympy import primepi, totient %o A062533 def A062533(n): %o A062533 if n == 1: return 1 %o A062533 m, k = n-1, primepi(n) + n - 1 + (n>>1) %o A062533 while m != k: %o A062533 m, k = k, primepi(k) + n - 1 + (k>>1) %o A062533 return totient(m) # _Chai Wah Wu_, Jul 31 2024 %Y A062533 Subset of the totients of the odds (A037225). %Y A062533 Cf. A000010, A014076. %K A062533 easy,nonn %O A062533 1,2 %A A062533 _Jason Earls_, Jul 10 2001