This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062540 #26 Aug 04 2024 12:44:28 %S A062540 2,1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,10,2,4,1,8,2,1,5,3,11,3, %T A062540 17,2,338,2,3,1,1,6,3,1,2,1,1,1,2,1,2,3,9,1,1,1,2,21,1,1,2,5,3,1,1,3, %U A062540 1,1,10,1,1,1,40,1,2,7,1,1,2,2,2,1,1,2,81,1,2,2,1,1,4,8,3,5,1,1,3,180,2,1 %N A062540 Continued fraction for the Lemniscate constant or Gauss's constant. %H A062540 Harry J. Smith, <a href="/A062540/b062540.txt">Table of n, a(n) for n = 0..4999</a> %H A062540 Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/lemni.txt">Lemniscate or Gauss constant</a> %e A062540 2.622057554292119810464839589891119413682754951431623162816821703... %e A062540 2.622057554292119810464839589... = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 20 2009 %t A062540 ContinuedFraction[Sqrt[2*Pi^3]/(2*Gamma[3/4]^2), 100] (* _G. C. Greubel_, Oct 07 2018 *) %o A062540 (PARI) contfrac(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2)) %o A062540 (PARI) { allocatemem(932245000); default(realprecision, 5200); x=contfrac(Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2)); for (n=1, 5000, write("b062540.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Jun 20 2009 %o A062540 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Sqrt(2*Pi(R)^3)/(2*Gamma(3/4)^2)); // _G. C. Greubel_, Oct 07 2018 %Y A062540 Cf. A062539 (decimal expansion). %K A062540 easy,nonn,cofr %O A062540 0,1 %A A062540 _Jason Earls_, Jun 25 2001 %E A062540 Offset changed by _Andrew Howroyd_, Aug 04 2024