This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062547 #30 Mar 16 2024 11:30:55 %S A062547 1,3,5,7,17,19,53,55,161,163,485,487,1457,1459,4373,4375,13121,13123, %T A062547 39365,39367,118097,118099,354293,354295,1062881,1062883,3188645, %U A062547 3188647,9565937,9565939,28697813,28697815,86093441,86093443,258280325,258280327,774840977 %N A062547 a(n) is least odd integer not a partial sum of 1, 3, ..., a(n-1). %H A062547 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,3,3). %F A062547 a(2*n) = A048473(n); a(2n+1) = a(2n)+2. %F A062547 For n > 0, a(2*n) = 3*a(2*n-1) - 4; a(2*n+1) = a(2*n) + 2 = A052919(n+1). %F A062547 From _Bruno Berselli_, Jan 28 2011: (Start) %F A062547 G.f.: (1+4*x+5*x^2)/((1+x)*(1-3*x^2)). %F A062547 a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) for n > 2. %F A062547 a(n) = 2*3^((2*n + (-1)^n - 1)/4) - (-1)^n. (End) %e A062547 Partial sums of 1;3;5 are 1;3;4;5;6;8;9 and 7 is the least missing odd integer, hence the next term is 7. %t A062547 Table[ -1+ 2 3^Floor[k/2]+2 Mod[k, 2], {k, 0, 36}] %t A062547 LinearRecurrence[{-1,3,3},{1,3,5},40] (* _Harvey P. Dale_, Jul 14 2018 *) %Y A062547 Cf. A048473, A052919, A062548. %K A062547 nonn,easy %O A062547 0,2 %A A062547 _Wouter Meeussen_, Jun 26 2001 %E A062547 Edited by _Michel Marcus_, Mar 16 2024