cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062553 Number of Abelian subgroups of the dihedral group with 2n elements.

This page as a plain text file.
%I A062553 #17 Feb 24 2019 11:06:56
%S A062553 2,5,5,9,7,13,9,16,12,19,13,24,15,25,19,29,19,33,21,36,25,37,25,44,28,
%T A062553 43,31,48,31,53,33,54,37,55,39,63,39,61,43,68,43,71,45,72,51,73,49,82,
%U A062553 52,81,55,84,55,89,59,92,61,91,61,102,63,97,69,103,69,107,69,108,73
%N A062553 Number of Abelian subgroups of the dihedral group with 2n elements.
%C A062553 The rank of the fundamental group with genus one of the D_2n; cobordism category in dimension 1+1, with D_2n the dihedral group of order 2n. - _C. Segovia_, Dec 05 2012
%H A062553 C. Segovia, <a href="http://arxiv.org/abs/1211.2144">The classifying space of the 1+1 dimensional G-cobordism category</a>, arXiv:1211.2144 [math.AT], 2012-2013.
%F A062553 a(n) = n + tau(n) if n is odd, (3/2)*n + tau(n) if n is even, where tau(n) = the number of divisors of n (A000005).
%t A062553 a[n_] := If[OddQ[n], n, 3n/2] + DivisorSigma[0, n];
%t A062553 Array[a, 69] (* _Jean-François Alcover_, Feb 24 2019 *)
%Y A062553 Cf. A062249, A007503.
%K A062553 nonn
%O A062553 1,1
%A A062553 Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001
%E A062553 Formula and more terms from _Vladeta Jovovic_, Jul 05 2001