cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062664 Composite and every divisor (except for 1) contains the digit 2.

This page as a plain text file.
%I A062664 #29 Dec 05 2022 04:42:24
%S A062664 254,422,482,502,526,529,542,562,842,1042,1642,2042,2246,2258,2402,
%T A062664 2426,2434,2446,2458,2462,2474,2498,2518,2554,2558,2566,2578,2582,
%U A062664 2594,2642,2654,2846,2854,2858,2921,3242,3254,3442,4022,4126,4162,4222,4226
%N A062664 Composite and every divisor (except for 1) contains the digit 2.
%C A062664 If k is in the sequence, then all composite divisors of k are in the sequence. - _Robert Israel_, Jul 11 2019
%H A062664 Robert Israel, <a href="/A062664/b062664.txt">Table of n, a(n) for n = 1..10000</a>
%e A062664 254 has divisors 1, 2, 127 and 254, all of which except for 1 contain the digit 2.
%p A062664 filter:= proc(n) local D;
%p A062664   if isprime(n) then return false fi;
%p A062664   andmap(con2,numtheory:-divisors(n) minus {1})
%p A062664 end proc:
%p A062664 con2:= proc(n) option remember; member(2,convert(n,base,10)) end proc:
%p A062664 select(filter, [$4..10000]);# _Robert Israel_, Jul 11 2019
%t A062664 fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 4230], !PrimeQ[#] && fQ[#, 2] &] (* _Robert G. Wilson v_, Jun 11 2014 *)
%o A062664 (Magma) [m:m in [2..4300] | not IsPrime(m) and #[d:d in Divisors(m)|2 in Intseq(d)] eq #Divisors(m)-1]; // _Marius A. Burtea_, Jul 11 2019
%Y A062664 Cf. A062649, A062668, A062670, A062672, A062674, A062676, A062678, A062680, A243819.
%K A062664 base,easy,nonn
%O A062664 1,1
%A A062664 _Erich Friedman_, Jul 04 2001
%E A062664 Offset changed by _Robert Israel_, Jul 11 2019