cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062678 Composite and every divisor (except 1) contains the digit 8.

This page as a plain text file.
%I A062678 #27 Jul 21 2024 17:59:29
%S A062678 6889,7387,23489,25187,31789,32287,34087,48721,50861,56689,60787,
%T A062678 68143,68309,68641,68807,73289,73781,76807,78053,78409,78587,78943,
%U A062678 78961,80089,81589,87487,88147,98023,98521,106489,106987,108389,110087
%N A062678 Composite and every divisor (except 1) contains the digit 8.
%H A062678 Amiram Eldar, <a href="/A062678/b062678.txt">Table of n, a(n) for n = 1..10000</a>
%e A062678 7387 has divisors 83, 89 and 7387, each of which contains the digit 8.
%t A062678 fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 110100], !PrimeQ[#] && fQ[#, 8] &] (* _Robert G. Wilson v_, Jun 11 2014 *)
%t A062678 dc8Q[n_]:=AllTrue[Rest[Divisors[n]],DigitCount[#,10,8]>0&]; Select[Range[ 111000],CompositeQ[ #]&&dc8Q[#]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 30 2020 *)
%o A062678 (Magma) [k:k in [2..120000]|  not IsPrime(k) and forall{d:d in Set(Divisors(k)) diff {1}| 8 in Intseq(d)}];// _Marius A. Burtea_, Nov 07 2019
%Y A062678 Cf. A062653, A062664, A062667, A062668, A062669, A062670, A062671, A062672, A062673, A062674, A062675, A062676, A062677, A062679, A062680.
%K A062678 base,easy,nonn
%O A062678 1,1
%A A062678 _Erich Friedman_, Jul 04 2001
%E A062678 Offset corrected by _Amiram Eldar_, Nov 07 2019