This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062678 #27 Jul 21 2024 17:59:29 %S A062678 6889,7387,23489,25187,31789,32287,34087,48721,50861,56689,60787, %T A062678 68143,68309,68641,68807,73289,73781,76807,78053,78409,78587,78943, %U A062678 78961,80089,81589,87487,88147,98023,98521,106489,106987,108389,110087 %N A062678 Composite and every divisor (except 1) contains the digit 8. %H A062678 Amiram Eldar, <a href="/A062678/b062678.txt">Table of n, a(n) for n = 1..10000</a> %e A062678 7387 has divisors 83, 89 and 7387, each of which contains the digit 8. %t A062678 fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 110100], !PrimeQ[#] && fQ[#, 8] &] (* _Robert G. Wilson v_, Jun 11 2014 *) %t A062678 dc8Q[n_]:=AllTrue[Rest[Divisors[n]],DigitCount[#,10,8]>0&]; Select[Range[ 111000],CompositeQ[ #]&&dc8Q[#]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 30 2020 *) %o A062678 (Magma) [k:k in [2..120000]| not IsPrime(k) and forall{d:d in Set(Divisors(k)) diff {1}| 8 in Intseq(d)}];// _Marius A. Burtea_, Nov 07 2019 %Y A062678 Cf. A062653, A062664, A062667, A062668, A062669, A062670, A062671, A062672, A062673, A062674, A062675, A062676, A062677, A062679, A062680. %K A062678 base,easy,nonn %O A062678 1,1 %A A062678 _Erich Friedman_, Jul 04 2001 %E A062678 Offset corrected by _Amiram Eldar_, Nov 07 2019