This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062679 #29 Sep 08 2022 08:45:03 %S A062679 19,29,59,79,89,97,109,139,149,179,191,193,197,199,229,239,269,293, %T A062679 349,359,379,389,397,409,419,439,449,479,491,499,509,569,593,599,619, %U A062679 659,691,709,719,739,769,797,809,829,839,859,907,911,919,929,937,941,947 %N A062679 Numbers such that every divisor (except 1, but including the number itself) contains the digit 9. %C A062679 Different from A106093. 1691 = 19 * 89 is the smallest term that is not in A106093. - _Franklin T. Adams-Watters_, Apr 30 2007 %H A062679 Amiram Eldar, <a href="/A062679/b062679.txt">Table of n, a(n) for n = 1..10000</a> %e A062679 7961 has divisors 19, 419 and 7961, all of which contain the digit 9. %t A062679 fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1000], fQ[#, 9] &] (* _Robert G. Wilson v_, Jun 11 2014 *) %t A062679 d9Q[n_]:=First[Union[DigitCount[#,10,9]&/@Rest[Divisors[n]]]]>0; Select[ Range[ 2,1000],d9Q] (* _Harvey P. Dale_, Sep 12 2014 *) %o A062679 (PARI) isok(n) = {if (n==1, return (0)); d = divisors(n); for (k=1, #d, if ((d[k] != 1) && (vecmax(digits(d[k])) != 9), return (0));); return (1);} \\ _Michel Marcus_, Nov 21 2015 %o A062679 (Magma) [n: n in [2..1000] | forall{Divisors(n)[i]: i in [2..NumberOfDivisors(n)] | 9 in Intseq(Divisors(n)[i])}]; // _Bruno Berselli_, Nov 21 2015 %Y A062679 Cf. A062653, A062664, A062667, A062668, A062669, A062670, A062671, A062672, A062673, A062674, A062675, A062676, A062677, A062678, A062680. %K A062679 base,easy,nonn %O A062679 1,1 %A A062679 _Erich Friedman_, Jul 04 2001