cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062680 Composite numbers whose divisors (except 1) all contain the digit 9.

This page as a plain text file.
%I A062680 #26 Sep 08 2022 08:45:03
%S A062680 1691,2291,3629,5191,5539,5597,6931,7391,7921,7961,8497,8791,9101,
%T A062680 9329,9409,9481,9671,9701,10981,10991,11269,13129,13891,14239,15089,
%U A062680 15931,15941,16999,17197,17309,17879,17951,17993,18091,18449,18829,18943
%N A062680 Composite numbers whose divisors (except 1) all contain the digit 9.
%H A062680 Amiram Eldar, <a href="/A062680/b062680.txt">Table of n, a(n) for n = 1..10000</a>
%e A062680 7961 has divisors 19, 419 and 7961, all of which contain the digit 9.
%t A062680 fQ[n_] := Union[Drop[Last /@ Sort /@ IntegerDigits[ Divisors[ n]], 1]] == {9}; Select[ Range[ 19110], fQ[ # ] == True && ! PrimeQ[ # ] &] (* _Zak Seidov_ and _Robert G. Wilson v_, May 17 2005 *)
%t A062680 fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 19110], !PrimeQ[#] && fQ[#, 9] &] (* _Robert G. Wilson v_, Jun 11 2014 *)
%o A062680 (Magma) [k:k in [2..20000]|  not IsPrime(k) and forall{d:d in Set(Divisors(k)) diff {1}| 9 in Intseq(d)}];// _Marius A. Burtea_, Nov 07 2019
%Y A062680 Composite members of A062679.
%Y A062680 Cf. A062653, A062664, A062667, A062668, A062669, A062670, A062671, A062672, A062673, A062674, A062675, A062676, A062677, A062678.
%K A062680 base,easy,nonn
%O A062680 1,1
%A A062680 _Erich Friedman_, Jul 04 2001
%E A062680 Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, May 16 2007