cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062682 Numbers that are sums of two or more consecutive (positive) cubes in more than 1 way.

This page as a plain text file.
%I A062682 #24 Dec 17 2015 00:07:59
%S A062682 33075,89559,105525,164800,188784,189189,353241,443456,608391,1271600,
%T A062682 2370816,3132116,3132675,3184236,5821200,9018000,9769375,11437525,
%U A062682 20793591,22153600,24359616,28685440,47651373,55454525,56078784,61765200,77053284
%N A062682 Numbers that are sums of two or more consecutive (positive) cubes in more than 1 way.
%H A062682 Charles R Greathouse IV, <a href="/A062682/b062682.txt">Table of n, a(n) for n = 1..1000</a>
%e A062682 33075 = 11^3 + 12^3 + ... + 19^3 = 15^3 + 16^3 + ... + 20^3.
%e A062682 The first number having three representations is 246153726441216 = (2144^3 + ... + 5631^3) = (3047^3 + ... + 5720^3) = (8072^3 + ... + 8504^3). - _Robert G. Wilson v_, Nov 16 2012
%t A062682 nn = 10^10; t1 = {}; s = 1; i = 1; While[i++; s = s + i^3; s < nn/2, AppendTo[t1, s]]; t = t1; i = 0; While[Length[t1] > 1, i++;  t1 = Rest[t1] - i^3; t = Join[t, t1]]; t = Select[t, # < t1[[1]] &]; t2 = Sort[Select[Tally[t], #[[2]] > 1 &]]; Transpose[t2][[1]] (* _T. D. Noe_, Nov 16 2012 *)
%o A062682 (PARI) list(lim)=my(v=List(),u=v,s,y);for(x=1,(lim\2)^(1/3),s=x^3;y=x;while(1,s+=y++^3;if(s>lim,break,listput(v,s))));v=vecsort(Vec(v));for(i=2,#v,if(v[i]==v[i-1],listput(u,v[i])));vecsort(Vec(u),,8) \\ _Charles R Greathouse IV_, Nov 16 2012
%o A062682 (Haskell)
%o A062682 import Data.Set (singleton, deleteFindMin, insert, Set)
%o A062682 a062682 n = a062682_list !! (n-1)
%o A062682 a062682_list = f (singleton (1 + 2^3, (1, 2))) 0 0 where
%o A062682    f s z z' = if y == z && z' /= z then y : f s'' y z else f s'' y z
%o A062682               where s'' = (insert (y', (i, j')) $
%o A062682                            insert (y' - i ^ 3 , (i + 1, j')) s')
%o A062682                     y' = y + j' ^ 3; j' = j + 1
%o A062682                     ((y, (i, j)), s') = deleteFindMin s
%o A062682 -- _Reinhard Zumkeller_, Dec 16 2015
%Y A062682  Subsequence of A265377 and of A265845.
%K A062682 nonn
%O A062682 1,1
%A A062682 _Erich Friedman_, Jul 04 2001
%E A062682 Missing a(23)-a(24) from _Charles R Greathouse IV_, Nov 16 2012