This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062692 #47 Aug 24 2023 03:14:03 %S A062692 2,3,5,8,14,23,41,71,127,226,412,747,1377,2538,4720,8800,16510,31042, %T A062692 58636,111013,210871,401428,766150,1465020,2807196,5387991,10358999, %U A062692 19945394,38458184,74248451,143522117,277737797,538038783,1043325198 %N A062692 Number of irreducible polynomials over F_2 of degree at most n. %C A062692 Number of binary pre-necklaces of length n. - _Joerg Arndt_, Jul 20 2013 %H A062692 G. C. Greubel, <a href="/A062692/b062692.txt">Table of n, a(n) for n = 1..3320</a> %H A062692 P. Burcsi, G. Fici, Z. Lipták, F. Ruskey, and J. Sawada, <a href="http://www.cis.uoguelph.ca/~sawada/papers/pnf.pdf">On prefix normal words and prefix normal forms</a>, Preprint, 2016. %H A062692 G. Fici and Zs. Lipták, <a href="http://www.i3s.unice.fr/~mh/RR/2011/RR-11-03-G.FICI.pdf">On Prefix Normal Words</a>. %H A062692 G. Fici and Zs. Lipták, <a href="http://dx.doi.org/10.1007/978-3-642-22321-1_20">On Prefix Normal Words</a>, Developments in Language Theory 2011, Lecture Notes in Computer Science 6795, 228-238. %H A062692 Kenneth H. Hicks, Gary L. Mullen, and Ikuro Sato, <a href="https://doi.org/10.1007/978-3-642-59435-9_13">Distribution of irreducible polynomials over F_2, in Finite Fields with Applications to Coding Theory</a>, Cryptography and Related Areas (Oaxaca, 2001), 177-186, Springer, Berlin, 2002. %H A062692 M. Waldschmidt, <a href="http://www.math.jussieu.fr/~miw/articles/pdf/MZV2011IMSc.pdf">Lectures on Multiple Zeta Values</a>, IMSC 2011. %F A062692 a(n) = Sum_{m=1..n} (1/m)*Sum_{d | m } mu(d)*2^{m/d}. %F A062692 a(n) = A091226(2^(n+1)). %F A062692 G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k)*log(1/(1 - 2*x^k))/k. - _Ilya Gutkovskiy_, Nov 11 2019 %p A062692 with(numtheory):for n from 1 to 113 do sum3 := 0:for m from 1 to n do sum2 := 0:a := divisors(m):for h from 1 to nops(a) do sum2 := sum2+mobius(a[h])*2^(m/a[h]):end do:sum3 := sum3+sum2/m:end do:s[n] := sum3:end do:q := seq(s[j],j=1..113); %t A062692 a[n_] := Sum[1/m DivisorSum[m, MoebiusMu[#]*2^(m/#)&], {m, 1, n}]; Array[a, 34] (* _Jean-François Alcover_, Dec 07 2015 *) %t A062692 f[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#) &] / n; Accumulate[Array[f, 30]] (* _Amiram Eldar_, Aug 24 2023 *) %o A062692 (PARI) a(n)=sum(m=1,n, 1/m* sumdiv(m, d, moebius(d)*2^(m/d) ) ); /* _Joerg Arndt_, Jul 04 2011 */ %Y A062692 Partial sums of A001037. %Y A062692 Cf. A014580, A091226, A091231. %Y A062692 Equals A001036 + 1. %Y A062692 Column k=2 of A143328. - _Alois P. Heinz_, Jul 20 2013 %K A062692 nonn,easy %O A062692 1,1 %A A062692 Gary L Mullen (mullen(AT)math.psu.edu), Jul 04 2001 %E A062692 More terms from _Sascha Kurz_, Mar 25 2002