This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062708 #51 Aug 18 2024 03:17:13 %S A062708 0,2,13,33,62,100,147,203,268,342,425,517,618,728,847,975,1112,1258, %T A062708 1413,1577,1750,1932,2123,2323,2532,2750,2977,3213,3458,3712,3975, %U A062708 4247,4528,4818,5117,5425,5742,6068,6403,6747,7100,7462,7833,8213,8602,9000 %N A062708 Write 0,1,2,3,4,... in a triangular spiral; then a(n) is the sequence found by reading the terms along the line from 0 in the direction 0,2,... %H A062708 G. C. Greubel, <a href="/A062708/b062708.txt">Table of n, a(n) for n = 0..1000</a> %H A062708 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a> [broken link] %H A062708 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A062708 a(n) = n*(9*n-5)/2. %F A062708 a(n) = 9*n + a(n-1) - 7 (with a(0)=0). - _Vincenzo Librandi_, Aug 07 2010 %F A062708 From _Colin Barker_, Jul 07 2012: (Start) %F A062708 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A062708 G.f.: x*(2+7*x)/(1-x)^3. (End) %F A062708 a(n) = A218470(9n+1). - _Philippe Deléham_, Mar 27 2013 %F A062708 E.g.f.: x*(4 + 9*x)*exp(x)/2. - _G. C. Greubel_, Sep 02 2019 %e A062708 The spiral begins: %e A062708 . %e A062708 15 %e A062708 / \ %e A062708 16 14 %e A062708 / \ %e A062708 17 3 13 %e A062708 / / \ \ %e A062708 18 4 2 12 %e A062708 / / \ \ %e A062708 19 5 0---1 11 %e A062708 / / \ %e A062708 20 6---7---8---9--10 %e A062708 . %e A062708 From _Vincenzo Librandi_, Aug 07 2010: (Start) %e A062708 a(1) = 9*1 + 0 - 7 = 2; %e A062708 a(2) = 9*2 + 2 - 7 = 13; %e A062708 a(3) = 9*3 + 13 - 7 = 33. (End) %p A062708 seq(n*(9*n-5)/2, n=0..50); # _G. C. Greubel_, Sep 02 2019 %t A062708 Table[n*(9*n-5)/2, {n,0,50}] (* _G. C. Greubel_, Sep 02 2019 *) %t A062708 nxt[{n_,a_}]:={n+1,9(n+1)+a-7}; NestList[nxt,{0,0},50][[All,2]] (* _Harvey P. Dale_, Apr 11 2022 *) %o A062708 (PARI) a(n)=n*(9*n-5)/2 \\ _Charles R Greathouse IV_, Jun 17 2017 %o A062708 (Magma) [n*(9*n-5)/2: n in [0..50]]; // _G. C. Greubel_, Sep 02 2019 %o A062708 (Sage) [n*(9*n-5)/2 for n in (0..50)] # _G. C. Greubel_, Sep 02 2019 %o A062708 (GAP) List([0..50], n-> n*(9*n-5)/2); # _G. C. Greubel_, Sep 02 2019 %Y A062708 Cf. A051682. %Y A062708 Cf. A218470. %Y A062708 Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this is case k=9). %K A062708 nonn,easy %O A062708 0,2 %A A062708 _Floor van Lamoen_, Jul 21 2001