This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062711 #19 Mar 13 2023 07:19:27 %S A062711 0,1,4,6,8,10,15,19,21,25,32,34,38,44,46,52,60,66,73,79,87,93,98,104, %T A062711 114,122,128,138,146,154,163,173,181,193,203,213,221,231,239,245,259, %U A062711 273,280,294,304,316,327,343,359,369 %N A062711 Number of prime Gaussian integers z=a+bi with |z|<=n. %H A062711 T. D. Noe, <a href="/A062711/b062711.txt">Table of n, a(n) for n=1..1000</a> %H A062711 <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a> %F A062711 Two prime Gaussian integers are not counted separately if they are associated, i.e. if their quotient is a unit (1, i, -1 or -i). %F A062711 Similar to the ordinary prime number theorem (see A000720) we have the asymptotic expression: a(n) ~ n^2/(2 * log(n)) - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 16 2001 %F A062711 a(1)=0, a(n)=1+A066339(n^2)+A066490(n) for n>0. - _T. D. Noe_, Feb 20 2007 %t A062711 m = 50; %t A062711 t = Table[x + y I, {x, -m, m}, {y, -m, m}] // Flatten[#, 1]& // Select[#, PrimeQ[#, GaussianIntegers -> True]& ]& // Sort // DeleteDuplicates[#, Abs[#1] == Abs[#2] && MatchQ[#1 /#2 , 1|-1|I|-I]& ]&; %t A062711 a[n_] := Select[t, Abs[#] <= n&] // Length; %t A062711 Array[a, m] (* _Jean-François Alcover_, Jul 29 2016 *) %Y A062711 Cf. A000328, A062327, A000720. %K A062711 nonn,nice %O A062711 1,3 %A A062711 _Reiner Martin_, Jul 14 2001