This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062723 #29 Oct 04 2024 11:57:20 %S A062723 1,1,2,6,12,12,36,36,36,108,108,108,324,324,324,972,972,972,2916,2916, %T A062723 2916,8748,8748,8748,26244,26244,26244,78732,78732,78732,236196, %U A062723 236196,236196,708588,708588,708588,2125764,2125764,2125764,6377292,6377292 %N A062723 Least common multiple (LCM) of the first n+1 terms of A000792. %C A062723 Apparently this sequence (when taken without repeats) is a subsequence of A000792, cf. A202337. %H A062723 Harry J. Smith, <a href="/A062723/b062723.txt">Table of n, a(n) for n = 0..400</a> %H A062723 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a> %H A062723 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 3). %F A062723 a(n) = 4*3^floor(n/3), n >= 3. - _Vladeta Jovovic_, Jul 18 2001 %F A062723 G.f.: (1+x+2*x^2+3*x^3+9*x^4+6*x^5+18*x^6)/(1-3*x^3). %e A062723 a(4)=12 because a(4) is the LCM of 1,1,2,3,4 - which is clearly 12. %t A062723 Module[{nn=50,trms},trms=CoefficientList[Series[(1+x+2x^2+x^4)/(1-3x^3),{x,0,nn}],x];Table[LCM@@Take[trms,n],{n,nn}]] (* or *) LinearRecurrence[{0,0,3},{1,1,2,6,12,12,36},50] (* _Harvey P. Dale_, Oct 04 2024 *) %o A062723 (PARI) a(n)=if(n<0,0,if(n<4,n!,4*3^(n\3))) %o A062723 (Haskell) %o A062723 a062723 n = a062723_list !! n %o A062723 a062723_list = scanl1 lcm a000792_list %o A062723 -- _Reinhard Zumkeller_, Dec 17 2011 %Y A062723 Cf. A000244, A000792. %K A062723 easy,nonn %O A062723 0,3 %A A062723 Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 15 2001 %E A062723 Formula and correction from _Vladeta Jovovic_, Jul 18 2001 %E A062723 More terms from _Jason Earls_, Jul 21 2001