This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062730 #18 Aug 29 2013 14:02:30 %S A062730 7,12,14,19,21,23,32,34,45,47,60,62,77,79,96,98,117,119,140,142,165, %T A062730 167,192,194,221,223,252,254,285,287,320,322,357,359,396,398,437,439, %U A062730 480,482,525,527,572,574,621,623,672,674,725,727,780,782,837,839 %N A062730 Rows of Pascal's triangle which contain 3 terms in arithmetic progression. %C A062730 Except for n=19, all n < 1000 have the form k^2-2 or k^2-4. When n=k^2-2, the three terms in AP are consecutive binomial coefficients C(n,k(k-1)/2-2), C(n,k(k-1)/2-1), and C(n,k(k-1)/2). When n=k^2-4, the three terms in AP differ by two: C(n,k(k-1)/2-4), C(n,k(k-1)/2-2), and C(n,k(k-1)/2). When n=19, the three terms in AP are C(19,4), C(19,6), and C(19,7). [From _T. D. Noe_, Mar 23 2009] %H A062730 Reinhard Zumkeller, <a href="/A062730/b062730.txt">Table of n, a(n) for n = 1..100</a> %F A062730 G.f.: (-5x^8+3x^7+7x^6-3x^5+5x^4-5x^3-12x^2+5x+7)/[(1-x)(1-x^2)^2] (conjectured). - _Ralf Stephan_, May 08 2004 %F A062730 a(n)=(n^2+8*n+8)/4 for n>4 and even; a(n)=(n^2+10*n+9)/4 for n>4 and odd (conjectured). - _Colin Barker_, Aug 29 2013 %e A062730 12 is in the list since the 12th row of Pascal's triangle starts 1 12 (66) 220 (495) 792 (924) and 66 495 924 are in arithmetic progression. %t A062730 kmax = 30; row[n_] := Table[Binomial[n, k], {k, 0, Floor[n/2]}]; Reap[Do[r = row[n]; If[ (r /. {___, a_, ___, b_, ___, c_, ___} /; b - a == c - b -> {}) == {}, Print[n]; Sow[n]], {n, Union[{19}, Range[2, kmax]^2 - 2, Range[2, kmax]^2 - 4]}]][[2, 1]] (* _Jean-François Alcover_, Jul 11 2012, after _T. D. Noe_ *) %o A062730 (Haskell) %o A062730 -- import Data.List (intersect) %o A062730 a062730 n = a062730_list !! (n-1) %o A062730 a062730_list = filter f $ [3..] where %o A062730 f x = not $ all null $ zipWith %o A062730 (\us (v:vs) -> map (v -) us `intersect` map (subtract v) vs) %o A062730 (tail $ init $ inits bns) (tail $ init $ tails bns) %o A062730 where bns = a034868_row x %o A062730 -- _Reinhard Zumkeller_, Jun 10 2013 %Y A062730 Cf. A034868, A007318. %K A062730 nice,nonn %O A062730 1,1 %A A062730 _Erich Friedman_, Jul 11 2001 %E A062730 More terms from _Naohiro Nomoto_, Oct 01 2001 %E A062730 Offset corrected by _Reinhard Zumkeller_, Jun 10 2013