This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062741 #71 Dec 26 2023 11:23:12 %S A062741 0,3,15,36,66,105,153,210,276,351,435,528,630,741,861,990,1128,1275, %T A062741 1431,1596,1770,1953,2145,2346,2556,2775,3003,3240,3486,3741,4005, %U A062741 4278,4560,4851,5151,5460,5778,6105,6441,6786,7140,7503,7875,8256,8646,9045 %N A062741 3 times pentagonal numbers: 3*n*(3*n-1)/2. %C A062741 Write 0,1,2,3,4,... in a triangular spiral; then a(n) is the sequence found by reading from 0 in the vertical upward direction. %C A062741 Number of edges in the join of two complete graphs of order 2n and n, K_2n * K_n - _Roberto E. Martinez II_, Jan 07 2002 %H A062741 Nathaniel Johnston, <a href="/A062741/b062741.txt">Table of n, a(n) for n = 0..10000</a> %H A062741 Franck Ramaharo, <a href="https://arxiv.org/abs/1802.07701">Statistics on some classes of knot shadows</a>, arXiv:1802.07701 [math.CO], 2018. %H A062741 Franck Ramaharo, <a href="https://arxiv.org/abs/1805.10680">A generating polynomial for the pretzel knot</a>, arXiv:1805.10680 [math.CO], 2018. %H A062741 Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.3470205">The groupoid of the Triangular Numbers and the generation of related integer sequences</a>, Politecnico di Torino, Italy (2019). %H A062741 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A062741 a(n) = binomial(3*n, 2). - _Zerinvary Lajos_, Jan 02 2007 %F A062741 a(n) = (9*n^2 - 3*n)/2 = 3*n(3*n-1)/2 = A000326(n)*3. - _Omar E. Pol_, Dec 11 2008 %F A062741 a(n) = a(n-1) + 9*n - 6, with n > 0, a(0)=0. - _Vincenzo Librandi_, Aug 07 2010 %F A062741 G.f.: 3*x*(1+2*x)/(1-x)^3. - _Bruno Berselli_, Jan 21 2011 %F A062741 a(n) = A218470(9n+2). - _Philippe Deléham_, Mar 27 2013 %F A062741 a(n) = n*A008585(n) + Sum_{i=0..n-1} A008585(i) for n > 0. - _Bruno Berselli_, Dec 19 2013 %F A062741 From _Amiram Eldar_, Jan 10 2022: (Start) %F A062741 Sum_{n>=1} 1/a(n) = log(3) - Pi/(3*sqrt(3)). %F A062741 Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(3*sqrt(3)) - 4*log(2)/3. (End) %F A062741 E.g.f.: (3/2)*x*(2 + 3*x)*exp(x). - _G. C. Greubel_, Dec 26 2023 %e A062741 The spiral begins: %e A062741 15 %e A062741 16 14 %e A062741 17 3 13 %e A062741 18 4 2 12 %e A062741 19 5 0 1 11 %e A062741 20 6 7 8 9 10 %p A062741 [seq(binomial(3*n,2),n=0..45)]; # _Zerinvary Lajos_, Jan 02 2007 %t A062741 3*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 06 2019 *) %o A062741 (PARI) a(n)=3*n*(3*n-1)/2 \\ _Charles R Greathouse IV_, Sep 24 2015 %o A062741 (Magma) [Binomial(3*n,2): n in [0..50]]; // _G. C. Greubel_, Dec 26 2023 %o A062741 (SageMath) [binomial(3*n,2) for n in range(51)] # _G. C. Greubel_, Dec 26 2023 %Y A062741 Cf. A000326, A008585, A051682, A218470. %Y A062741 Cf. 3 times n-gonal numbers: A045943, A033428, A094159, A152773, A152751, A152759, A152767, A153783, A153448, A153875. %K A062741 nonn,easy %O A062741 0,2 %A A062741 _Floor van Lamoen_, Jul 21 2001 %E A062741 Better definition and edited by _Omar E. Pol_, Dec 11 2008