This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062749 #14 Jan 05 2025 19:51:36 %S A062749 12,43,108,228,431,753,1239,1944,2934,4287,6094,8460,11505,15365, %T A062749 20193,26160,33456,42291,52896,65524,80451,97977,118427,142152,169530, %U A062749 200967,236898,277788,324133,376461 %N A062749 Sixth column (r=5) of FS(3) staircase array A062745. %C A062749 In the Frey-Sellers reference this sequence is called {(n+3) over 5}_{2}, n >= 0. %H A062749 Colin Barker, <a href="/A062749/b062749.txt">Table of n, a(n) for n = 0..1000</a> %H A062749 D. D. Frey and J. A. Sellers, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/39-2/frey.pdf">Generalizing Bailey's generalization of the Catalan numbers</a>, The Fibonacci Quarterly, 39 (2001) 142-148. %H A062749 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A062749 a(n) = A062745(n+3, 5)= -3+binomial(n+4, 3)*(n^2+16*n+75)/20 = (n+1)*(n^4+24*n^3+221*n^2+894*n+1440)/5!. %F A062749 G.f.: N(3;2, x)/(1-x)^6 with N(3;2, x)= 12-29*x+30*x^2-15*x^3+3*x^4, polynomial of the third row of A062746. %F A062749 From _Colin Barker_, Oct 30 2018: (Start) %F A062749 G.f.: (12 - 29*x + 30*x^2 - 15*x^3 + 3*x^4) / (1 - x)^6. %F A062749 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. %F A062749 (End) %p A062749 seq(coeff(series((3*x^4-15*x^3+30*x^2-29*x+12)/(1-x)^6,x,n+1), x, n), n = 0 .. 30); # _Muniru A Asiru_, Oct 30 2018 %o A062749 (PARI) Vec((12 - 29*x + 30*x^2 - 15*x^3 + 3*x^4) / (1 - x)^6 + O(x^40)) \\ _Colin Barker_, Oct 30 2018 %K A062749 nonn,easy %O A062749 0,1 %A A062749 _Wolfdieter Lang_, Jul 12 2001