This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062762 #27 Sep 16 2024 12:47:30 %S A062762 1,1,2,3,5,8,11,18,26,38,55,80,116,166,240,345,497,710,1016,1453,2073, %T A062762 2955,4211,5992,8523,12111,17202,24423,34648,49152,69694,98795,140009, %U A062762 198378,281016,398002,563612,797999,1129737,1599166,2263457,3203381 %N A062762 Number of powerful numbers not exceeding 2^n. %C A062762 Number of terms x from A001694 for which x <= 2^n. %H A062762 Chai Wah Wu, <a href="/A062762/b062762.txt">Table of n, a(n) for n = 0..127</a> (terms 0..90 from Daniel Suteu) %F A062762 a(n) = Sum_{k=0..n} A062761(k). - _Daniel Suteu_, Feb 18 2020 %e A062762 Below 128, the 18 powerful numbers {1,4,8,9,16,25,...,100,108,121,125,128} can be found, so a(7)=18. %t A062762 nn = 41; s = Union@ Flatten@ Table[a^2*b^3, {b, (2^nn)^(1/3)}, {a, Sqrt[(2^nn)/b^3]}]; Table[FirstPosition[s, 2^k][[1]], {k, 2, nn}] (* _Michael De Vlieger_, Oct 29 2023 *) %o A062762 (PARI) a(n) = my(s=0,N=2^n); forsquarefree(k=1, sqrtnint(N, 3), s += sqrtint(N\k[1]^3)); s; \\ _Daniel Suteu_, Feb 18 2020 %o A062762 (Python) %o A062762 from math import isqrt %o A062762 from sympy import mobius, integer_nthroot %o A062762 def A062762(n): %o A062762 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A062762 m = 1<<n %o A062762 c, l, j = squarefreepi(integer_nthroot(m,3)[0]), 0, isqrt(m) %o A062762 while j>1: %o A062762 k2 = integer_nthroot(m//j**2,3)[0]+1 %o A062762 w = squarefreepi(k2-1) %o A062762 c += j*(w-l) %o A062762 l, j = w, isqrt(m//k2**3) %o A062762 return c-l # _Chai Wah Wu_, Sep 13 2024 %Y A062762 Cf. A001694, A029837, A036380, A036386, A062761. %K A062762 nonn %O A062762 0,3 %A A062762 _Labos Elemer_, Jul 16 2001 %E A062762 a(19)-a(41) from _Donovan Johnson_, Oct 01 2009