This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062781 #35 Mar 12 2021 22:24:42 %S A062781 0,0,0,1,2,3,5,7,9,12,15,18,22,26,30,35,40,45,51,57,63,70,77,84,92, %T A062781 100,108,117,126,135,145,155,165,176,187,198,210,222,234,247,260,273, %U A062781 287,301,315,330,345,360,376,392 %N A062781 Number of arithmetic progressions of four terms and any mean which can be extracted from the set of the first n positive integers. %C A062781 This sequence seems to be a shifted version of the Somos sequence A058937. %C A062781 Equal to the partial sums of A002264 (cf. A130518) but with initial index 1 instead of 0. - _Hieronymus Fischer_, Jun 01 2007 %C A062781 Apart from offset, the same as A130518. - _R. J. Mathar_, Jun 13 2008 %C A062781 Apart from offset, the same as A001840. - _Michael Somos_, Sep 18 2010 %H A062781 Muniru A Asiru, <a href="/A062781/b062781.txt">Table of n, a(n) for n = 1..750</a> %H A062781 Michael Somos, <a href="https://grail.eecs.csuohio.edu/~somos/somospol.html">Somos Polynomials</a> %H A062781 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1). %F A062781 a(n) = P(n,4), where P(n,k) = n*floor(n/(k - 1)) - (1/2)(k - 1)(floor(n/(k - 1))*(floor(n/(k - 1)) + 1)); recursion: a(n) = a(n-3) + n - 3; a(1) = a(2) = a(3) = 0. %F A062781 From _Hieronymus Fischer_, Jun 01 2007: (Start) %F A062781 a(n) = (1/2)*floor((n-1)/3)*(2*n - 3 - 3*floor((n-1)/3)). %F A062781 G.f.: x^4/((1 - x^3)*(1 - x)^2). (End) %F A062781 a(n) = floor((n-1)/3) + a(n-1). - _Jon Maiga_, Nov 25 2018 %F A062781 E.g.f.: ((4 - 6*x + 3*x^2)*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - _Franck Maminirina Ramaharo_, Nov 25 2018 %p A062781 seq(coeff(series(x^4/((1-x^3)*(1-x)^2),x,n+1), x, n), n = 1 .. 50); # _Muniru A Asiru_, Nov 25 2018 %t A062781 RecurrenceTable[{a[0]==0, a[n]==Floor[n/3] + a[n-1]}, a, {n, 49}] (* _Jon Maiga_, Nov 25 2018 *) %o A062781 (Sage) [floor(binomial(n,2)/3) for n in range(0,50)] # _Zerinvary Lajos_, Dec 01 2009 %Y A062781 Cf. A058937, A001840. %Y A062781 Cf. A002620, A130519, A130520. %K A062781 nonn,easy %O A062781 1,5 %A A062781 _Santi Spadaro_, Jul 18 2001