cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062781 Number of arithmetic progressions of four terms and any mean which can be extracted from the set of the first n positive integers.

This page as a plain text file.
%I A062781 #35 Mar 12 2021 22:24:42
%S A062781 0,0,0,1,2,3,5,7,9,12,15,18,22,26,30,35,40,45,51,57,63,70,77,84,92,
%T A062781 100,108,117,126,135,145,155,165,176,187,198,210,222,234,247,260,273,
%U A062781 287,301,315,330,345,360,376,392
%N A062781 Number of arithmetic progressions of four terms and any mean which can be extracted from the set of the first n positive integers.
%C A062781 This sequence seems to be a shifted version of the Somos sequence A058937.
%C A062781 Equal to the partial sums of A002264 (cf. A130518) but with initial index 1 instead of 0. - _Hieronymus Fischer_, Jun 01 2007
%C A062781 Apart from offset, the same as A130518. - _R. J. Mathar_, Jun 13 2008
%C A062781 Apart from offset, the same as A001840. - _Michael Somos_, Sep 18 2010
%H A062781 Muniru A Asiru, <a href="/A062781/b062781.txt">Table of n, a(n) for n = 1..750</a>
%H A062781 Michael Somos, <a href="https://grail.eecs.csuohio.edu/~somos/somospol.html">Somos Polynomials</a>
%H A062781 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).
%F A062781 a(n) = P(n,4), where P(n,k) = n*floor(n/(k - 1)) - (1/2)(k - 1)(floor(n/(k - 1))*(floor(n/(k - 1)) + 1)); recursion: a(n) = a(n-3) + n - 3; a(1) = a(2) = a(3) = 0.
%F A062781 From _Hieronymus Fischer_, Jun 01 2007: (Start)
%F A062781 a(n) = (1/2)*floor((n-1)/3)*(2*n - 3 - 3*floor((n-1)/3)).
%F A062781 G.f.: x^4/((1 - x^3)*(1 - x)^2). (End)
%F A062781 a(n) = floor((n-1)/3) + a(n-1). - _Jon Maiga_, Nov 25 2018
%F A062781 E.g.f.: ((4 - 6*x + 3*x^2)*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - _Franck Maminirina Ramaharo_, Nov 25 2018
%p A062781 seq(coeff(series(x^4/((1-x^3)*(1-x)^2),x,n+1), x, n), n = 1 .. 50); # _Muniru A Asiru_, Nov 25 2018
%t A062781 RecurrenceTable[{a[0]==0, a[n]==Floor[n/3] + a[n-1]}, a, {n, 49}] (* _Jon Maiga_, Nov 25 2018 *)
%o A062781 (Sage) [floor(binomial(n,2)/3) for n in range(0,50)] # _Zerinvary Lajos_, Dec 01 2009
%Y A062781 Cf. A058937, A001840.
%Y A062781 Cf. A002620, A130519, A130520.
%K A062781 nonn,easy
%O A062781 1,5
%A A062781 _Santi Spadaro_, Jul 18 2001