This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062790 #28 Dec 15 2023 06:19:12 %S A062790 0,1,1,1,1,2,1,2,2,4,1,3,1,6,5,4,1,6,1,5,7,10,1,6,4,12,6,7,1,8,1,8,11, %T A062790 16,9,8,1,18,13,10,1,12,1,11,12,22,1,12,6,20,17,13,1,18,13,14,19,28,1, %U A062790 13,1,30,16,16,15,20,1,17,23,24,1,16,1,36,24,19,15,24,1,20,18,40,1,19 %N A062790 Moebius transform of the cototient function A051953. %H A062790 Antti Karttunen, <a href="/A062790/b062790.txt">Table of n, a(n) for n = 1..16384</a> (terms 1 .. 2000 from Harry J. Smith) %H A062790 Antti Karttunen, <a href="/A062790/a062790.txt">Data supplement: n, a(n) computed for n = 1..100000</a> %H A062790 N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence) %F A062790 a(n) = Sum f(n/d)*mu(d), where d divides n and f(x) = x-phi(x) = A051953(x). %F A062790 a(n) = A056239(A318836(n)). - _Antti Karttunen_, Nov 24 2018 %F A062790 From _Amiram Eldar_, Dec 15 2023: (Start) %F A062790 a(n) = A000010(n) - A007431(n). %F A062790 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 6/Pi^2 - 36/Pi^4. (End) %e A062790 n = 255, its divisors are {1,3,5,25,17,51,85,255}, A051953(255/d) = {127,21,19,1,7,1,1,0}, mu(d) = {1,-1,-1,1,-1,1,1,-1}, the sum is a(255) = 127-21-19+1-7+1+1+0 = 130-47 = 83. %t A062790 Table[DirichletConvolve[MoebiusMu[n], n-EulerPhi[n], n, k], {k, 100}] (* _Amiram Eldar_, Nov 24 2018 *) %o A062790 (PARI) A062790(n)={ %o A062790 local(a=0) ; %o A062790 fordiv(n,d, %o A062790 a += moebius(d)*(n/d-eulerphi(n/d)) ; %o A062790 ) ; %o A062790 return(a) ; %o A062790 } \\ _R. J. Mathar_, Mar 24 2012 %o A062790 (PARI) A062790(n) = sumdiv(n,d,moebius(n/d)*(d-eulerphi(d))); \\ _Antti Karttunen_, Nov 24 2018 %Y A062790 Cf. A000010, A001065, A007431, A051953, A056239, A318836. %K A062790 nonn %O A062790 1,6 %A A062790 _Labos Elemer_, Jul 19 2001 %E A062790 OFFSET changed from 0 to 1 by _Harry J. Smith_, Aug 11 2009