cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062799 Inverse Möbius transform of the numbers of distinct prime factors (A001221).

This page as a plain text file.
%I A062799 #79 Jul 28 2018 11:55:42
%S A062799 0,1,1,2,1,4,1,3,2,4,1,7,1,4,4,4,1,7,1,7,4,4,1,10,2,4,3,7,1,12,1,5,4,
%T A062799 4,4,12,1,4,4,10,1,12,1,7,7,4,1,13,2,7,4,7,1,10,4,10,4,4,1,20,1,4,7,6,
%U A062799 4,12,1,7,4,12,1,17,1,4,7,7,4,12,1,13,4,4
%N A062799 Inverse Möbius transform of the numbers of distinct prime factors (A001221).
%C A062799 Let us say that two divisors d_1 and d_2 of n are adjacent divisors if d_1/d_2 or d_2/d_1 is a prime. Then a(n) is the number of all pairs of adjacent divisors of n. - _Vladimir Shevelev_, Aug 16 2010
%C A062799 Equivalent to the preceding comment: a(n) is the number of edges in the directed multigraph on tau(n) vertices, vertices labeled by the divisors d_i of n, where edges connect vertex(d_i) and vertex(d_j) if the ratio of the labels is a prime. - _R. J. Mathar_, Sep 23 2011
%C A062799 a(A001248(n)) = 2. - _Reinhard Zumkeller_, Dec 02 2014
%C A062799 Depends on the prime signature of n as follows: a(A025487(n)) = 0, 1, 2, 4, 3, 7, 4, 10, 12, 5, 12, 13, 20, 6, 17, 16, 28, 7, 22, 33, 19 ,32, 24, 36, 8, 27, 46, ... (n>=1). - _R. J. Mathar_, May 28 2017
%H A062799 T. D. Noe, <a href="/A062799/b062799.txt">Table of n, a(n) for n = 1..10000</a>
%H A062799 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arXiv:1405.5283 [math.NT], 2014.
%H A062799 E. Pérez Herrero, Psychedelic Geometry Blogspot, <a href="http://psychedelic-geometry.blogspot.com/2009/09/curious-series-002.html">CURIOUS SERIES-002</a>
%F A062799 a(n) = Sum_{d|n} A001221(d), that is, where d runs over divisors of n.
%F A062799 For squarefree s (i.e., s in A005117), a(s) = omega(s)*2^(omega(s)-1), where omega(n) = A001221(n). Also, for n>1, a(n) <= omega(n)*A000005(n) - 1. - _Enrique Pérez Herrero_, Sep 08 2009
%F A062799 Let n=Product_{i=1..omega(n)} p(i)^e(i). a(n) = d[Product_{i=1..omega(n)} (1 + e(i)*x)]/dx|x=1. In other words, a(n) = Sum_{m>=1} A146289(n,m)*m. - _Geoffrey Critzer_, Feb 10 2015
%F A062799 a(A000040(n)) = 1; a(A001248(n)) = 2; a(A030078(n)) = 3; a(A030514(n)) = 4; a(A050997(n)) = 5. - _Altug Alkan_, Oct 17 2015
%F A062799 a(n) = Sum_{prime p|n} A000005(n/p). - _Max Alekseyev_, Aug 11 2016
%F A062799 G.f.: Sum_{k>=1} omega(k)*x^k/(1 - x^k), where omega(k) is the number of distinct primes dividing k (A001221). - _Ilya Gutkovskiy_, Jan 16 2017
%F A062799 Dirichlet g.f.: zeta(s)^2*primezeta(s) where primezeta(s) = Sum_{prime p} p^(-s). - _Benedict W. J. Irwin_, Jul 16 2018
%e A062799 n = 255: divisors = {1, 3, 5, 15, 17, 51, 85, 255}, a(255) = 0+1+1+2+1+2+2+3 = 12.
%p A062799 read("transforms") ;
%p A062799 A001221 := proc(n)
%p A062799         nops(numtheory[factorset](n)) ;
%p A062799 end proc:
%p A062799 omega := [seq(A001221(n),n=1..80)] ;
%p A062799 ones := [seq(1,n=1..80)] ;
%p A062799 DIRICHLET(ones,omega) ; # _R. J. Mathar_, Sep 23 2011
%p A062799 N:= 1000: # to get a(1) to a(N)
%p A062799 B:= Vector(N,t-> nops(numtheory:-factorset(t))):
%p A062799 A:= Vector(N):
%p A062799 for d from 1 to N do
%p A062799   md:= d*[$1..floor(N/d)];
%p A062799   A[md]:= map(`+`,A[md],B[d])
%p A062799 od:
%p A062799 convert(A,list); # _Robert Israel_, Oct 21 2015
%t A062799 f[n_] := Block[{d = Divisors[n], c = l = 0, k = 2}, l = Length[d]; While[k < l + 1, c = c + Length[ FactorInteger[ d[[k]] ]]; k++ ]; Return[c]]; Table[f[n], {n, 1, 100} ]
%t A062799 omega[n_] := Length[FactorInteger[n]]; SetAttributes[omega, Listable]; omega[1] := 0; A062799[n_] := Plus @@ omega[Divisors[n]] (* _Enrique Pérez Herrero_, Sep 08 2009 *)
%o A062799 (Haskell)
%o A062799 a062799 = sum . map a001221 . a027750_row
%o A062799 -- _Reinhard Zumkeller_, Dec 02 2014
%o A062799 (PARI) a(n)=my(f=factor(n)[,2],s);forvec(v=vector(#f,i,[0,f[i]]),s+=sum(i=1,#f,v[i]>0));s \\ _Charles R Greathouse IV_, Oct 15 2015
%o A062799 (PARI) vector(100, n, sumdiv(n, k, omega(k))) \\ _Altug Alkan_, Oct 15 2015
%Y A062799 Cf. A001221, A001248, A027750.
%K A062799 nonn
%O A062799 1,4
%A A062799 _Labos Elemer_, Jul 19 2001