This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062822 #27 Aug 13 2024 01:56:09 %S A062822 1,3,4,6,12,8,18,12,14,24,24,18,20,32,36,24,42,30,72,32,48,54,48,38, %T A062822 60,56,42,96,44,72,48,72,54,72,80,90,60,62,96,84,144,68,96,144,72,74, %U A062822 114,96,168,80,126,84,108,132,120,90,112,128,144,120,98,102,216,104,192 %N A062822 Sum of divisors of the squarefree numbers: sigma(A005117(n)). %H A062822 Harvey P. Dale, <a href="/A062822/b062822.txt">Table of n, a(n) for n = 1..1000</a> %F A062822 a(n) = Product_{k=1..A001221(n)} (A265668(n,k) + 1). - _Reinhard Zumkeller_, Dec 13 2015 %F A062822 From _Amiram Eldar_, Nov 21 2022: (Start) %F A062822 a(n) = A000203(A005117(n)). %F A062822 Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/(72*zeta(3)) = A152649 / A002117 = 1.1254908... . (End) %t A062822 DivisorSigma[1,#]&/@Select[Range[150],SquareFreeQ] (* _Harvey P. Dale_, May 18 2014 *) %o A062822 (PARI) j=[]; for(n=1,200, if(issquarefree(n),j=concat(j, sigma(n)))); j %o A062822 (Haskell) %o A062822 a062822 1 = 1 %o A062822 a062822 n = product $ map (+ 1) $ a265668_row n %o A062822 -- _Reinhard Zumkeller_, Dec 13 2015 %o A062822 (Python) %o A062822 from math import isqrt %o A062822 from sympy import mobius, divisor_sigma %o A062822 def A062822(n): %o A062822 def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) %o A062822 m, k = n, f(n) %o A062822 while m != k: %o A062822 m, k = k, f(k) %o A062822 return divisor_sigma(m) # _Chai Wah Wu_, Aug 12 2024 %Y A062822 Cf. A000203, A005117, A002117, A152649, A265668, A001221. %K A062822 nonn %O A062822 1,2 %A A062822 _Jason Earls_, Jul 20 2001