This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062845 #95 Sep 08 2022 08:45:03 %S A062845 0,1,5,6,10,12,30,36,60,120,180,215,216,252,360,430,432,1080,2730, %T A062845 3276,13710,14724,16380,20520,24624,24840,27125,27420,32760,38880, %U A062845 48606,49091,54250,54840,97212,98280 %N A062845 When expressed in base 2 and then interpreted in base 3, is a multiple of the original number. %C A062845 The numbers 2*m, 4*m and 8*m are also terms of the sequence for m=a(122). - _Dimiter Skordev_, Mar 29 2020 %H A062845 Dimiter Skordev, <a href="/A062845/b062845.txt">Table of n, a(n) for n = 1..122</a> (terms < 10^15, terms 1..36 from Erich Friedman, 37..111 from Dimiter Skordev, 112..120 from Giovanni Resta) %H A062845 Dimiter Skordev, <a href="/A062845/a062845_1.pas.txt">Pascal program</a> %H A062845 Dimiter Skordev, <a href="/A062845/a062845_1.py.txt">Python script</a> %e A062845 30 = 11110_2; 11110_3 = 120 = 4*30. %t A062845 {0} ~Join~ Select[Range[10^5], Mod[ FromDigits[ IntegerDigits[#, 2], 3], #] == 0 &] (* _Giovanni Resta_, Dec 10 2019 *) %o A062845 (Magma) [0] cat [k:k in [1..100000]|Seqint(Intseq(Seqint(Intseq(k, 2))),3) mod k eq 0]; // _Marius A. Burtea_, Dec 29 2019 %o A062845 (PARI) isok(m) = (m==0) || fromdigits(digits(m, 2), 3) % m == 0; \\ _Michel Marcus_, Feb 15 2020 %o A062845 (Python) %o A062845 def BaseUp(n,b): %o A062845 up, b1 = 0, 1 %o A062845 while n > 0: %o A062845 up, b1, n = up+(n%b)*b1, b1*(b+1), n//b %o A062845 return up %o A062845 n, k = 1, 0 %o A062845 print(1,0) %o A062845 while n < 35: %o A062845 n, k = n+1, k+1 %o A062845 while BaseUp(k,2)%k != 0: %o A062845 k = k+1 %o A062845 print(n,k) # _A.H.M. Smeets_, Mar 31 2020 %Y A062845 Cf. A062846, A062847, A062848, A062849, A062850, A032533, A062853. %Y A062845 Cf. A005836. %K A062845 base,nonn %O A062845 1,3 %A A062845 _Erich Friedman_, Jul 21 2001