This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062853 #40 Mar 07 2023 07:40:43 %S A062853 0,1,2,53,91,182,194,273,546,582,948,1092,1236,2184,2527,9373,19238, %T A062853 28119,57714,84357,173142,185640,452807,21774372,48833136,65323116, %U A062853 1145127998,3435383994,4804366457,11296002941,14224061544,18500792316,28413081060,33888008823 %N A062853 When expressed in base 3 and then interpreted in base 4, is a multiple of the original number. %C A062853 From _Jon E. Schoenfield_, Mar 06 2023: (Start) %C A062853 Let u(k) be the result of expressing an integer k in base 3 and interpreting the result as a base-4 number, and define the ratio r(k) = u(k)/k. Then (after the initial term 0) the sequence consists of the integers k > 0 such that r(k) is an integer. %C A062853 Note that, among all numbers k in any interval [m*3^j, (m+1)*3^j - 1] where m > 0, r(k) is maximized at k = m*3^j and minimized at (m+1)*3^j - 1. Consequently, there cannot be any terms in that interval unless there is at least one integer in the interval [r((m+1)*3^j - 1), r(m*3^j)]. (This observation is implemented in the Magma program below, which, when run on the Magma Calculator, computes the first 34 terms in about 0.5 seconds.) (End) %C A062853 Numbers k such that A023717(k) is a multiple of k. - _Michel Marcus_, Mar 07 2023 %H A062853 Jon E. Schoenfield, <a href="/A062853/b062853.txt">Table of n, a(n) for n = 1..55</a> (all terms < 3^48). %e A062853 53 = 1222_3; 1222_4 = 106 = 2*53. %t A062853 fQ[n_] := Mod[ FromDigits[ IntegerDigits[n, 3], 4], n] == 0; %t A062853 k = 1; lst = {}; %t A062853 While[k < 10^10/8, If[ fQ@k, AppendTo[ lst, k]; Print@k]; k++ ]; %t A062853 lst (* _Robert G. Wilson v_, Feb 24 2010 *) %o A062853 (Magma) %o A062853 N := 34; // max # of terms %o A062853 A := [0]; %o A062853 D := [1]; // base-3 dgts (reversed) at curr srch point %o A062853 j := 1; // pointer (at ones place) %o A062853 while #A lt N do %o A062853 if j eq 1 then // test a single integer (k) %o A062853 k := Seqint(D, 3); %o A062853 if Seqint(D, 4) mod k eq 0 then %o A062853 A[#A+1] := k; %o A062853 end if; %o A062853 D[j] +:= 1; %o A062853 else // test the interval [k0, k1] %o A062853 k0 := Seqint(D, 3); %o A062853 k1 := k0 + 3^(j - 1) - 1; %o A062853 u0 := Seqint(D, 4); %o A062853 u1 := Seqint(Intseq(k1, 3), 4); %o A062853 if u0 div k0 gt (u1 - 1) div k1 then %o A062853 // at least 1 integer in interval [u1/k1, u0/k0] %o A062853 j -:= 1; // test its 3 subintervals %o A062853 else %o A062853 D[j] +:= 1; %o A062853 end if; %o A062853 end if; %o A062853 while D[j] eq 3 do // all 3 subintervals tested %o A062853 D[j] := 0; // reset %o A062853 j +:= 1; // move up to larger interval %o A062853 if j gt #D then %o A062853 D[j] := 1; // add a digit %o A062853 break; %o A062853 end if; %o A062853 D[j] +:= 1; %o A062853 end while; %o A062853 end while; %o A062853 A; // _Jon E. Schoenfield_, Mar 05 2023 %Y A062853 Cf. A023717. %K A062853 base,nonn %O A062853 1,3 %A A062853 _Erich Friedman_, Jul 21 2001 %E A062853 a(21)-a(27) from _Robert G. Wilson v_, Feb 24 2010 %E A062853 Offset changed to 1 and a(28), a(29) from _Georg Fischer_, Mar 03 2023 %E A062853 a(30)-a(34) from _Jon E. Schoenfield_, Mar 05 2023